CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LIU Jie, JIAO Anyuan, BO Qifan, DING Yunlong, CHEN Yan. Experiments on relative angles of grinding two sides of involute pole groups[J]. Diamond & Abrasives Engineering, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185
Citation: LIU Jie, JIAO Anyuan, BO Qifan, DING Yunlong, CHEN Yan. Experiments on relative angles of grinding two sides of involute pole groups[J]. Diamond & Abrasives Engineering, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185

Experiments on relative angles of grinding two sides of involute pole groups

doi: 10.13394/j.cnki.jgszz.2023.0185
More Information
  • Received Date: 2023-09-03
  • Accepted Date: 2023-11-28
  • Rev Recd Date: 2023-11-21
  • Objectives : Titanium alloys are increasingly widely used in the aerospace field, and their research and development significantly influence the advancement of military aircraft, civil aviation, engines, and other high-tech equipment. However, titanium alloy are challenging to machine due to theri small deformation coefficient, low thermal conductivity, and the high temperatures generated during traditional cutting methods, which leads to tool wear. As a result, parts often have low precision, and surface quality is generally poor. This study proposes a double-sided magnetic abrasive finishing (MAF) method using opposing magnetic pole sets with adjustable relative angles to address surface defects—such as bumps, scratches, and microcracks—on the surface of titanium alloy TC4 and to improve its grinding efficiency. Methods: This study compares three types of lined magnets and introduces an involute-lined magnet design. Based on this design, opposing magnetic pole sets are used to generate an initial relative angle between them. The effects of different relative angles on double-sided MAF are tested to determine whether this method can improve the magnetic induction intensity and promote a more uniform distribution of abrasives. The results show that this approach addresses the challenges of poor abrasive fluidity and the inability of abrasives to tumble effectively. Additionally, the simultaneous grinding of both sides of the workpiece enhances processing efficiency, effectively removes the surface defects of the workpiece, and improves the grinding efficiency and surface quality. Results: The application of involute-lined magnets with a relative angle for double-sided MAF yields improved processing results under the following test conditions: magnetic pole group speed of 600 r/min, processing gap of 2 mm, magnetic abrasives size of 150 μm, and a relative angle of 10°. After 30 minutes of grinding, the surface roughness of the front side of the titanium alloy is reduced from Ra 0.458 μm to Ra 0.116 μm, and the surface height variation decreases from 43.3 μm to 7.8 μm. The reverse side also shows improvements, with surface roughness decreasing from Ra 0.434 μm to Ra 0.111 μm, and surface height variation reducing from 44.2 μm to 8.4 μm. Conclusions: The use of involute-lined magnets to create a relative angle for double-sided grinding effectively improves surface defects, such as scratches and grooves, on the workpiece. This method also significantly enhances grinding efficiency compared to single-sided grinding. The involute arrangement of magnets minimizes variations in magnetic induction intensity, which improves grinding efficiency and ensures a more uniform distribution of the magnetic field. This uniformity results in better adsorption of magnetic abrasives and enhanced grinding quality. When grinding at a relative angle of 10°, the magnetic field gradient changes significantly, covering a wider area with stronger magnetic induction. This variation in magnetic field gradient faciliates the tumbling of magnetic abrasives and the timely renewal of cutting edges, ultimately improving processing performance.

     

  • loading
  • [1]
    张应鹏, 祁宇星. 钛合金助力航空海工装备新发展: 先进钛合金结构材料分论坛侧记 [J]. 中国材料进展,2021,40(10):790-791. doi: 10.7502/j.issn.1674-3962.2021.10.zgcljz202110010

    ZHANG Yingpeng, QI Yuxing. Titanium alloy contributes to the new development of aviation and marine engineering equipment: Sidelights of the sub forum on advanced titanium alloy structural materials [J]. China Materials Progress,2021,40(10):790-791. doi: 10.7502/j.issn.1674-3962.2021.10.zgcljz202110010
    [2]
    李军, 陈祥宝. 通用航空复合材料的发展现状与挑战 [J]. 材料导报,2022,36(14):206-211. doi: 10.11896/cldb.21110268

    LI Jun, CHEN Xiangbao. Development status and challenges of general aviation composites [J]. Materials Bulletin,2022,36(14):206-211. doi: 10.11896/cldb.21110268
    [3]
    YOU K Y, YAN G P, LUO X C, et al. Advances in laser assisted machining of hard and brittle materials [J]. Journal of Manufacturing Processes,2020,58:677-692. doi: 10.1016/j.jmapro.2020.08.034
    [4]
    LIU L P, LIN B, FANG F Z. Monitoring of tool wear in rotary ultrasonic machining of advanced ceramics [J]. Advanced Materials Research,2011( 314/315/316):1754-1759. doi: 10.4028/www.scientific.net/AMR.314-316.1754
    [5]
    邢绍美. 毛刺发生机理与形态及去除方法的探讨 [J]. 航天返回与遥感,2000(2):40-45,49.

    XING Shaomei. Discussion on burr generation mechanism, morphology and removal method [J]. Aerospace Return and Remote Sensing,2000(2):40-45,49.
    [6]
    冯薇. 精密与超精密磨削的发展现状 [J]. 精密制造与自动化,2009(2):8-9. doi: 10.3969/j.issn.1009-962X.2009.02.002

    FENG Wei. Current development of precision and ultra-precision grinding [J]. Precise Manufacturing & Automation,2009(2):8-9. doi: 10.3969/j.issn.1009-962X.2009.02.002
    [7]
    张占立, 熊明照, 王恒迪, 等. 氮化硅陶瓷滚子磁流变、化学与超声复合抛光工艺试验 [J]. 轴承,2016(2):14-19. doi: 10.3969/j.issn.1000-3762.2016.02.006

    ZHANG Zhanli, XIONG Mingzhao, WANG Hengdi, et al. Polishing processing test for silicon nitride ceramic rollers based on magnetorheological and chemo-ultrasonic compound technology [J]. Bearing,2016(2):14-19. doi: 10.3969/j.issn.1000-3762.2016.02.006
    [8]
    高永超, 程好, 杨淑平, 等. 金属基带的连续非接触式电化学抛光 [J]. 表面技术,2014,43(2):105-108. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.020

    GAO Yongchao, CHENG Hao, YANG Shuping, et al. Non-contact and continuous electrochemical polishing of the metal strip [J]. Surface Technology,2014,43(2):105-108. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.020
    [9]
    NGUYEN N T, TRAN T N, YIN S H, et al. Multi-objective optimization of improved magnetic abrasive finishing of multi-curved surfaces made of SUS202 material [J]. International Journal of Advanced Manufacturing Technology,2017,88:381-391. doi: 10.1007/s00170-016-8773-3
    [10]
    张坤领. 硬脆材料加工技术发展现状 [J]. 组合机床与自动化加工技术,2008(5):1-6,15. doi: 10.3969/j.issn.1001-2265.2008.05.001

    ZHANG Kunling. Overview the machining technology for hard and brittle materials [J]. Modular Machine Tool and Automatic Processing Technology,2008(5):1-6,15. doi: 10.3969/j.issn.1001-2265.2008.05.001
    [11]
    XUE B, GENG Y Q, WANG D, et al. Improvement in surface quality of microchannel structures fabricated by revolving tip-based machining [J]. Nanomanufacturing and Metrology,2019,2(1):26-35. doi: 10.1007/s41871-018-0032-9
    [12]
    刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展 [J]. 表面技术,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004

    LIU Wenhao, CHEN Yan, LI Wenlong, et al. Research progress of magnetic abrasive finishing technology [J]. Surface Technology,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004
    [13]
    刘宁, 赵玉刚, 高跃武, 等. CBN磁性磨料磁力研磨TC4钛合金工艺参 数优化 [J]. 组合机床与自动化加工技术,2020(3):131-135. doi: 10.13462/j.cnki.mmtamt.2020.03.031

    LIU Ning, ZHAO Yugang, GAO Yuewu, et al. Optimization of process parameters for magnetic abrasive finishing TC4 titanium alloy by CBN magnetic abrasive [J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(3):131-135. doi: 10.13462/j.cnki.mmtamt.2020.03.031
    [14]
    TIAN Y B, ANG Y J, ZHONG Z W. Chemical mechanical polishing of glass disk substrates: Preliminary experimental investigation [J]. Materials and Manufacturing Processes,2013,28(4/5/6):488-494. doi: 10.1080/10426914.2011.654161
    [15]
    朱子俊, 韩冰, 李奎, 等. 超声辅助磁粒研磨TC4平面的光整试验研究 [J]. 电镀与精饰,2020,42(10):6-11. doi: 10.3969/j.issn.1001⁃3849.2020.10.002

    ZHU Zijun, HAN Bing, LI Kui, et al. Experimental study on ultrasonic-assisted magnetic particle grinding of TC4 plane [J]. Plating and Finishing,2020,42(10):6-11. doi: 10.3969/j.issn.1001⁃3849.2020.10.002
    [16]
    LIU Z B, LI J, NIE M, et al. Modeling and simulation of workpiece surface flatness in magnetorheological plane finishing processes [J]. The International Journal of Advanced Manufacturing Technology,2020,111:2637-2651. doi: 10.1007/s00170-020-06267-w
    [17]
    潘明诗, 陈燕, 张东阳. 仿形磁极头对电磁研磨管件内表面形成的影响 [J]. 中国表面工程,2022,35(6):274-285. doi: 10.11933/j.issn.1007-9289.20220119001

    PAN Mingshi, CHEN Yan, ZHANG Dongyang. Effect of profiling magnetic pole head on the inner surface of electromagnetic finishing pipe fittings [J]. China Surface Engineering,2022,35(6):274-285. doi: 10.11933/j.issn.1007-9289.20220119001
    [18]
    张旭. 烧结磁性磨料制备过程分析及工艺优化[D]. 鞍山: 辽宁科技大学, 2014.

    ZHANG Xu. Mechanism study and process control of sintering magnetic abrasive [D]. Anshan: University of Science and Technology Liaoning, 2014.
    [19]
    姚新改, 轧刚, 丁艳红. 旋转磁场磁力光整内表面研磨机理研究[C]//中国机械工程学会特种加工分会. 2007年中国机械工程学会年会之第12届全国特种加工学术会议论文集. 《机械工程学报》编辑部, 2007: 377-380.

    YAO Xingai, YA Gang, DING Yanhong. Research on the mechanism of rotating magnetic field magnetic brightening inner surface grinding [C]//Chinese Society of Mechanical Engineering, Special Processing Branch. 2007 Proceedings of the 12th National Special Processing Academic Conference of Chinese Society of Mechanical Engineering Annual Meeting. Journal of Mechanical Engineering, 2007: 377-380.
    [20]
    杨子彧, 焦安源, 丁浩东, 等. 渐开线槽磁极改进磁粒研磨毛刺效果的试验研究 [J]. 表面技术,2023,52(4):329-337. doi: 10.16490/j.cnki.issn.1001-3660.2023.04.029

    YANG Ziyu, JIAO Anyuan, DING Haodong, et al. Experimental study on improving grinding burrs effect by magnetic abrasive finishing using magnetic pole with involute grooves [J]. Surface Technology,2023,52(4):329-337. doi: 10.16490/j.cnki.issn.1001-3660.2023.04.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (139) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return