CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐开线磁极组研磨双面的相对角度试验

刘杰 焦安源 薄啟帆 丁云龙 陈燕

刘杰, 焦安源, 薄啟帆, 丁云龙, 陈燕. 渐开线磁极组研磨双面的相对角度试验[J]. 金刚石与磨料磨具工程, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185
引用本文: 刘杰, 焦安源, 薄啟帆, 丁云龙, 陈燕. 渐开线磁极组研磨双面的相对角度试验[J]. 金刚石与磨料磨具工程, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185
LIU Jie, JIAO Anyuan, BO Qifan, DING Yunlong, CHEN Yan. Experiments on relative angles of grinding two sides of involute pole groups[J]. Diamond & Abrasives Engineering, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185
Citation: LIU Jie, JIAO Anyuan, BO Qifan, DING Yunlong, CHEN Yan. Experiments on relative angles of grinding two sides of involute pole groups[J]. Diamond & Abrasives Engineering, 2024, 44(5): 685-694. doi: 10.13394/j.cnki.jgszz.2023.0185

渐开线磁极组研磨双面的相对角度试验

doi: 10.13394/j.cnki.jgszz.2023.0185
基金项目: 辽宁省教育厅项目(LJKZ0295);辽宁省自然科学基金项目(2019-ZD-0029)。
详细信息
    作者简介:

    焦安源,男,1978年生,博士,教授、硕士研究生导师。主要研究方向:磁粒研磨加工、精密铣削加工及相关自动化设备开发。E-mail:jay@ustl.edu.cn

  • 中图分类号: TG176

Experiments on relative angles of grinding two sides of involute pole groups

  • 摘要: 为解决钛合金TC4表面的凸起、划痕和微裂纹等缺陷问题,提出一种对立磁极组产生相对角度的双面磁粒研磨方式,从而提高其研磨效率。在双面旋转研磨试验的基础上,对磁性磨粒进行受力分析,通过渐开线排布磁石的设计,对比该磁极下磁感应强度的变化,进而分析对立磁极组产生相对角度的磁场梯度对表面质量的影响规律,最后进行表面粗糙度变化检测,以及对研磨前后的工件表面微观形貌检测。结果表明:采用渐开线排布磁石,覆盖面积相对较大并且磁场分布均匀;相对角度$ {10}{\text{°}} $双面研磨时,磁场梯度变化较大,有利于磁性磨粒的及时翻滚。工件正面的表面粗糙度Ra由初始的0.458 μm降至0.116 μm,表面高度差由原始的43.3 μm降至7.8 μm;工件反面的表面粗糙度Ra由初始的0.434 μm降至0.111 μm,表面高度差由原始的44.2 μm降至8.4 μm。通过渐开线排布磁石产生相对角度的研磨加工,工件表面的凸起、划痕、沟壑和微裂纹等缺陷得到明显改善,工件双面同时研磨,提高了研磨效率。

     

  • 图  1  双面研磨加工原理

    Figure  1.  Principle of double-sided finishing

    图  2  单个磁性磨粒受力分析

    Figure  2.  Force analysis of single magnetic abrasive

    图  3  渐开线示意图

    Figure  3.  Schematic diagram of involute

    图  4  渐开线排布磁石示意图

    Figure  4.  Schematic diagram of involute magnet arrangement

    图  5  磁石排布仿真对比

    Figure  5.  Comparison of simulation of magnet arrangement

    图  6  两侧磁极组旋转角度示意图

    Figure  6.  Schematic diagram of rotation angle of magnetic pole group on both sides

    图  7  磁极组不同相对角度和磁场梯度变化

    Figure  7.  Variation of magnetic field gradient with different relative angles and magnetic pole group

    图  8  试验装置实物图

    Figure  8.  Physical diagram of the test setup

    图  9  表面粗糙度随时间的变化曲线

    Figure  9.  Curve of surface roughness with time

    图  10  工件正面研磨前后形貌对比和高度差对比图

    Figure  10.  Comparison of morphology and height difference before and after front grinding of workpiece

    图  11  工件反面研磨前后形貌对比和高度差对比图

    Figure  11.  Comparison of morphology and height difference before and after back grinding of workpiece

    表  1  磁场模拟仿真参数

    Table  1.   Parameters of magnetic field simulation

    参数名称数值或类型
    磁极组Ⅰ转速 n1 / (r·min−1)600
    磁极组Ⅱ转速 n2 / (r·min−1)600
    磁极组转向顺时针
    两侧磁极组距离 s / mm4
    初始相对角度 λ / (°)10
    下载: 导出CSV

    表  2  磁场模拟仿真参数

    Table  2.   Parameters of magnetic field simulation

    参数名称数值或类型
    磁极组Ⅰ转速 n1 / (r·min−1)600
    磁极组Ⅱ转速 n2 / (r·min−1)600
    磁极组转向顺时针
    两侧磁极组距离 s / mm4
    参考线长度 a / mm40
    初始相对角度 λ / (°)0、10、20
    下载: 导出CSV

    表  3  试验条件

    Table  3.   Test conditions

    参数名称数值或类型
    工件材料钛合金TC4板
    工件尺寸 / mm100.0 × 100.0 × 0.8
    加工间隙 l / mm2
    研磨液劳力恩SR-9911水基式研磨液6 mL
    磁性磨粒Fe与Al2O3混合烧结磨料,粒径为150 μm
    磁极组Ⅰ转速 n1 / (r·min−1)600
    磁极组Ⅱ转速 n2 / (r·min−1)600
    磁极组转向顺时针
    初始相对角度 λ / (°)0、10、20
    磨粒填充量 Q / g30
    加工时间 t / min30
    下载: 导出CSV
  • [1] 张应鹏, 祁宇星. 钛合金助力航空海工装备新发展: 先进钛合金结构材料分论坛侧记 [J]. 中国材料进展,2021,40(10):790-791. doi: 10.7502/j.issn.1674-3962.2021.10.zgcljz202110010

    ZHANG Yingpeng, QI Yuxing. Titanium alloy contributes to the new development of aviation and marine engineering equipment: Sidelights of the sub forum on advanced titanium alloy structural materials [J]. China Materials Progress,2021,40(10):790-791. doi: 10.7502/j.issn.1674-3962.2021.10.zgcljz202110010
    [2] 李军, 陈祥宝. 通用航空复合材料的发展现状与挑战 [J]. 材料导报,2022,36(14):206-211. doi: 10.11896/cldb.21110268

    LI Jun, CHEN Xiangbao. Development status and challenges of general aviation composites [J]. Materials Bulletin,2022,36(14):206-211. doi: 10.11896/cldb.21110268
    [3] YOU K Y, YAN G P, LUO X C, et al. Advances in laser assisted machining of hard and brittle materials [J]. Journal of Manufacturing Processes,2020,58:677-692. doi: 10.1016/j.jmapro.2020.08.034
    [4] LIU L P, LIN B, FANG F Z. Monitoring of tool wear in rotary ultrasonic machining of advanced ceramics [J]. Advanced Materials Research,2011( 314/315/316):1754-1759. doi: 10.4028/www.scientific.net/AMR.314-316.1754
    [5] 邢绍美. 毛刺发生机理与形态及去除方法的探讨 [J]. 航天返回与遥感,2000(2):40-45,49.

    XING Shaomei. Discussion on burr generation mechanism, morphology and removal method [J]. Aerospace Return and Remote Sensing,2000(2):40-45,49.
    [6] 冯薇. 精密与超精密磨削的发展现状 [J]. 精密制造与自动化,2009(2):8-9. doi: 10.3969/j.issn.1009-962X.2009.02.002

    FENG Wei. Current development of precision and ultra-precision grinding [J]. Precise Manufacturing & Automation,2009(2):8-9. doi: 10.3969/j.issn.1009-962X.2009.02.002
    [7] 张占立, 熊明照, 王恒迪, 等. 氮化硅陶瓷滚子磁流变、化学与超声复合抛光工艺试验 [J]. 轴承,2016(2):14-19. doi: 10.3969/j.issn.1000-3762.2016.02.006

    ZHANG Zhanli, XIONG Mingzhao, WANG Hengdi, et al. Polishing processing test for silicon nitride ceramic rollers based on magnetorheological and chemo-ultrasonic compound technology [J]. Bearing,2016(2):14-19. doi: 10.3969/j.issn.1000-3762.2016.02.006
    [8] 高永超, 程好, 杨淑平, 等. 金属基带的连续非接触式电化学抛光 [J]. 表面技术,2014,43(2):105-108. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.020

    GAO Yongchao, CHENG Hao, YANG Shuping, et al. Non-contact and continuous electrochemical polishing of the metal strip [J]. Surface Technology,2014,43(2):105-108. doi: 10.16490/j.cnki.issn.1001-3660.2014.02.020
    [9] NGUYEN N T, TRAN T N, YIN S H, et al. Multi-objective optimization of improved magnetic abrasive finishing of multi-curved surfaces made of SUS202 material [J]. International Journal of Advanced Manufacturing Technology,2017,88:381-391. doi: 10.1007/s00170-016-8773-3
    [10] 张坤领. 硬脆材料加工技术发展现状 [J]. 组合机床与自动化加工技术,2008(5):1-6,15. doi: 10.3969/j.issn.1001-2265.2008.05.001

    ZHANG Kunling. Overview the machining technology for hard and brittle materials [J]. Modular Machine Tool and Automatic Processing Technology,2008(5):1-6,15. doi: 10.3969/j.issn.1001-2265.2008.05.001
    [11] XUE B, GENG Y Q, WANG D, et al. Improvement in surface quality of microchannel structures fabricated by revolving tip-based machining [J]. Nanomanufacturing and Metrology,2019,2(1):26-35. doi: 10.1007/s41871-018-0032-9
    [12] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展 [J]. 表面技术,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004

    LIU Wenhao, CHEN Yan, LI Wenlong, et al. Research progress of magnetic abrasive finishing technology [J]. Surface Technology,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004
    [13] 刘宁, 赵玉刚, 高跃武, 等. CBN磁性磨料磁力研磨TC4钛合金工艺参 数优化 [J]. 组合机床与自动化加工技术,2020(3):131-135. doi: 10.13462/j.cnki.mmtamt.2020.03.031

    LIU Ning, ZHAO Yugang, GAO Yuewu, et al. Optimization of process parameters for magnetic abrasive finishing TC4 titanium alloy by CBN magnetic abrasive [J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(3):131-135. doi: 10.13462/j.cnki.mmtamt.2020.03.031
    [14] TIAN Y B, ANG Y J, ZHONG Z W. Chemical mechanical polishing of glass disk substrates: Preliminary experimental investigation [J]. Materials and Manufacturing Processes,2013,28(4/5/6):488-494. doi: 10.1080/10426914.2011.654161
    [15] 朱子俊, 韩冰, 李奎, 等. 超声辅助磁粒研磨TC4平面的光整试验研究 [J]. 电镀与精饰,2020,42(10):6-11. doi: 10.3969/j.issn.1001⁃3849.2020.10.002

    ZHU Zijun, HAN Bing, LI Kui, et al. Experimental study on ultrasonic-assisted magnetic particle grinding of TC4 plane [J]. Plating and Finishing,2020,42(10):6-11. doi: 10.3969/j.issn.1001⁃3849.2020.10.002
    [16] LIU Z B, LI J, NIE M, et al. Modeling and simulation of workpiece surface flatness in magnetorheological plane finishing processes [J]. The International Journal of Advanced Manufacturing Technology,2020,111:2637-2651. doi: 10.1007/s00170-020-06267-w
    [17] 潘明诗, 陈燕, 张东阳. 仿形磁极头对电磁研磨管件内表面形成的影响 [J]. 中国表面工程,2022,35(6):274-285. doi: 10.11933/j.issn.1007-9289.20220119001

    PAN Mingshi, CHEN Yan, ZHANG Dongyang. Effect of profiling magnetic pole head on the inner surface of electromagnetic finishing pipe fittings [J]. China Surface Engineering,2022,35(6):274-285. doi: 10.11933/j.issn.1007-9289.20220119001
    [18] 张旭. 烧结磁性磨料制备过程分析及工艺优化[D]. 鞍山: 辽宁科技大学, 2014.

    ZHANG Xu. Mechanism study and process control of sintering magnetic abrasive [D]. Anshan: University of Science and Technology Liaoning, 2014.
    [19] 姚新改, 轧刚, 丁艳红. 旋转磁场磁力光整内表面研磨机理研究[C]//中国机械工程学会特种加工分会. 2007年中国机械工程学会年会之第12届全国特种加工学术会议论文集. 《机械工程学报》编辑部, 2007: 377-380.

    YAO Xingai, YA Gang, DING Yanhong. Research on the mechanism of rotating magnetic field magnetic brightening inner surface grinding [C]//Chinese Society of Mechanical Engineering, Special Processing Branch. 2007 Proceedings of the 12th National Special Processing Academic Conference of Chinese Society of Mechanical Engineering Annual Meeting. Journal of Mechanical Engineering, 2007: 377-380.
    [20] 杨子彧, 焦安源, 丁浩东, 等. 渐开线槽磁极改进磁粒研磨毛刺效果的试验研究 [J]. 表面技术,2023,52(4):329-337. doi: 10.16490/j.cnki.issn.1001-3660.2023.04.029

    YANG Ziyu, JIAO Anyuan, DING Haodong, et al. Experimental study on improving grinding burrs effect by magnetic abrasive finishing using magnetic pole with involute grooves [J]. Surface Technology,2023,52(4):329-337. doi: 10.16490/j.cnki.issn.1001-3660.2023.04.029
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-03
  • 修回日期:  2023-11-21
  • 录用日期:  2023-11-28
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回