Mechanical properties and rock-breaking effects of ridge-shaped PDC teeth
-
摘要: 以地层特性为依据有针对性地选择PDC异形齿,可以降低其失效的概率并提高其机械钻速和进尺。为了综合对比脊形PDC齿的机械性能和破岩效果,对165斧形、135斧形、三刃3种脊形PDC齿的耐磨性能和抗冲击性能进行测试,随后选择花岗岩进行3个吃入深度的单齿切削试验和不同压力下的全尺寸钻头模拟钻进试验,并与普通圆形齿的结果进行对比。结果表明:3种脊形PDC齿的耐磨性能均优于圆形齿的;165斧形齿与三刃齿的抗冲击性能优于圆形齿的,而135斧形齿的冲击点缺少材料支撑,其抗冲击性能较差。在相同吃入深度下,脊形齿的切向力与法向力均低于圆形齿的相应力,且脊角越小切削力越小。135斧形齿的机械钻速最快且适合高钻压;与165斧形齿比较,三刃齿在≤20.0 kN的低钻压下机械钻速较快,在>20.0 kN的高钻压下机械钻速较慢;圆形齿的机械钻速最慢,所适合的钻压也较低。同时,当脊形齿的脊角变化时,其冲击点的材料支撑也发生改变,进而影响其抗冲击性能;且脊角变化会改变前方岩石内部的应力集中,进而改变其破岩效果。Abstract: Objectives: With the depletion of easily recoverable oil reservoirs, the focus of oil and gas exploration and development in China has shifted to "two deeps and non-conventional" oil and gas fields. This transformation is not only accompanied by a significant increase in well depth and more complex formation challenges but also presents more stringent requirements for the design and construction of drilling engineering, which directly leads to a significant extension of the drilling cycle. The length of the drilling cycle is a key factor in determining drilling costs. Therefore, for a long time, scholars have been committed to improving the mechanical penetration rate and the durability of polycrystalline diamond composite (PDC) bits. The main purpose of this study is to analyze geological characteristics in depth, accurately match and optimize the design of special-shaped teeth in PDC drill bits, in order to significantly reduce the risk of drill bit failure and greatly improve mechanical drilling speed and footage. Given the wide application of PDC bits in hard rock drilling and their key impact on the cost and efficiency of drilling operations, this study focuses on the design and optimization of ridge-shaped PDC teeth, aiming to explore more suitable tooth structures for specific geological conditions through scientific testing and comparative analysis. This will promote innovation and efficiency improvements in drilling technology. Methods: Based on round teeth, the wear resistance, impact resistance, and rock-breaking effect of three types of ridge-shaped teeth were systematically tested. First, the wear resistance and impact resistance of three typical ridge-shaped PDC teeth—namely the 165 axe-shaped, 135 axe-shaped, and three-edged cutters—were tested to quantitatively evaluate their mechanical properties. Subsequently, granite was selected as the representative rock sample, and the single-tooth cutting tests were conducted with three different penetration depths to simulate the cutting effect under various drilling pressures during actual drilling. Additionally, a full-size bit simulation drilling test was designed to evaluate the drilling performance of each tooth shape under different pressures, and the data were compared with those of round teeth. This series of tests aimed to fully reveal the advantages and disadvantages of ridge-shaped PDC teeth in terms of wear resistance, impact resistance, and rock-breaking effectiveness. Results: The test results show that the three ridge-shaped PDC cutters significantly outperform the round teeth in terms of wear resistance. The 135 axe-shaped cutter, with the smallest ridge angle, exhibited the greatest improvement in wear resistance, indicating that the ridge design enhances the durability of PDC cutters and bits. In terms of impact resistance, the 165 axe-shaped cutter and the three-edged cutter performed excellently and could effectively withstand high impact loads, while the 135 axe-shaped cutter had relatively weaker impact resistance due to insufficient support at the impact point. Further analysis of the cutting force data revealed that the tangential force and normal forces of ridge-shaped cutters were lower than those of round cutters at the same cutting depth. The smaller the ridge angle, the smaller the cutting force, which indicates that the ridge design helps reduce cutting resistance and improve drilling efficiency. The full-size drill bit simulation drilling test results showed that the 135 axe-shaped cutter achieved the fastest mechanical drilling speed and is suitable for high-pressure operations. The three-edged cutter performed better in the low-pressure range (≤ 20 kN), while the round teeth had the slowest drilling speed and a lower suitable drilling pressure range. Additionally, the variation in ridge tooth angle not only affects the impact resistance but also directly influences the rock-breaking effect by altering the stress distribution within the rock. Conclusions: Through systematic testing and comparative analysis, this study has verified the significant advantages of ridge-shaped PDC cutters in improving drilling efficiency and reducing the risk of drill bit failure. Specifically, the ridge design effectively enhances the wear resistance and impact resistance of the drill bit while reducing cutting force and increasing mechanical drilling speed. The performance differences of the various ridge-shaped cutters under different drilling pressure conditions provide a scientific basis for the flexible selection of drill bit types based on formation conditions during drilling operations. In the future, further optimization of ridge-shaped PDC cutter designs, especially for specific formation conditions, will be an important direction for improving mechanical drilling speeds and reducing operational costs.
-
Key words:
- PDC bit /
- special-shaped teeth /
- ridge-shaped teeth /
- mechanical property /
- rock-breaking effect
-
聚晶金刚石复合片(polycrystalline diamond compact,PDC)切削齿(简称PDC齿)凭借其卓越的性能在石油钻探领域得到广泛应用,目前PDC钻头已经占据石油等领域80%的市场份额和90%的进尺[1]。同时,我国“十四五”期间对“两深一非”油气田增储上产开展技术攻关,而随着钻井深度增加,地层环境更加复杂[2-4],PDC齿的失效等问题增大了钻井成本并制约了钻井作业的效率[5]。这主要包括齿的耐磨性差异导致的钻头磨口面积迅速扩展,进而导致相同钻压下钻头的吃入深度降低和机械钻速降低;另外,抗冲击性较差导致PDC齿断裂和其金刚石层剥落,使PDC齿失去切削能力,增加了起下钻次数,从而增加了钻井周期和成本。
为了降低钻井成本并提高钻井效率,学者们一直在致力于优化PDC齿的性能,并且已经取得了一定的进展。例如,提升金刚石粉末的中值粒度会提高PDC齿的抗冲击性能,降低金刚石粉末的中值粒度会提高其耐磨性能[6];通过合理的粒度配比可以同时提高PDC齿的耐磨和抗冲击性能[7];WC脱钴后用其微观粒子填充金刚石颗粒间空隙,可以有效提高PDC齿的抗冲击性能[8]等。
然而,仅仅依靠材料的改进并不能充分发挥PDC齿的潜力。通过对PDC齿磨损失效机理、冲击失效机理和破岩机理的深入研究,PDC生产商设计出了不同形状的PDC齿。在不改变基材的基础上,通过改善PDC齿的切削稳定性、耐磨性、抗冲击性以及切削力等关键性能指标,可进一步优化PDC齿的性能,使其能够更好地应对复杂的钻井工况[9-16]。
邹德永等[12]通过模拟和试验相结合的方法研究发现:与圆形齿相比,斧形齿在破岩过程中的切向力、轴向力波动较小,且其平均值也较低、破岩效率更高。CRANE等[13]对圆形齿和斧形齿进行了立式转塔车床(vertical turret lathe,VTL)测试,结果发现:斧形齿磨损时的金刚石层温度比圆形齿的低20%,同时其磨口面积也小于圆形齿的;较低的磨口温度意味着斧形齿在切削岩石过程中受到的热损伤更小,具有更长的使用寿命。孔栋梁等[14]通过ABAQUS有限元模拟了140°、150°、160°脊角斧形齿钻进砾石层时砾岩内部的应力场分布,结果表明140°脊角的斧形齿以30°后倾角钻进时的钻进效率最高。赵东鹏等[15]在斧形齿的基础上又研发了三刃齿(三棱齿)等新型多棱非平面PDC齿,并且认为三刃齿的防崩齿、防泥包等能力优于斧形齿的。刘建华等[16]利用有限元模拟和现场试验相结合的方法对比了三刃齿和圆形齿,模拟试验结果表明:与圆形齿相比,三刃齿的切向力和切向力波动幅度均更小;现场试验结果也证明:三刃齿具有较强的抗冲击性能,将三刃齿分布在钻头肩部和鼻部,在冲击性强的混合花岗岩地层钻进时其仍具有较高的机械钻速。李宁等[17]也使用三刃齿实现了在砾石层中提速的目标。
目前,脊形齿(斧形齿、三刃齿等)已经广泛应用于石油钻探领域,并且凭借其优异的齿形设计发挥了特有的破岩性能,但关于不同脊形齿机械性能和破岩效果差异的研究及对比还较少。因此,通过对比3种脊形齿的耐磨性能、抗冲击性能和破岩效果,以期实现齿形设计和钻头布齿等方面的迭代优化。
1. 试验装置和材料
1.1 试验装置
1.1.1 立式转塔车床
耐磨性试验和单齿破岩试验均由CK型立式转塔车床完成,该装置由切削系统和测量系统2部分组成,其中切削系统由电机、转盘、行程杆和悬臂组成。设备照片如图1所示,转盘夹紧岩石样品后由电机驱动转盘,进而带动岩石沿中轴线旋转,行程杆和悬臂控制PDC齿以一定吃入深度和进给速度切削岩石样品;测量系统由固定在切削齿上方的三向力传感器、信号放大器和计算机组成,可以实时记录并观察切削过程中PDC齿的受力情况。
1.1.2 落锤冲击试验机
试验用落锤冲击试验机如图2所示。图2中:122D型落锤冲击试验机由控制系统和冲击系统2部分组成,控制系统包括控制柜、电机和气泵,冲击系统包括铰链、行程杆、冲击部件(配重块、冲击靶材)、防二冲装置和底座等。其工作过程为电机带动铰链提升冲击部件到一定高度,随后松开卡扣,冲击部件自由落体,通过其势能和动能的转换,以设定的能量冲击测试样品,通过改变自由落体的高度和加减配重块可满足0~120 J的冲击测试要求。
1.1.3 全尺寸钻头室内模拟钻机
MK-7型全尺寸钻头室内模拟钻机由主机、泵站、操纵台3部分组成。主机由回转器、进给装置、夹持器和机架组成,进给装置可以控制回转器沿导轨移动,夹持器用于夹持钻头,回转器与夹持器配合可以控制钻具的进给或拔起,机架为整个装置提供支撑。操纵台为模拟钻机的控制中心,由控制阀、压力表及管件组成,可控制进给、回转、起拔、步移等动作。泵站是整个钻机的动力源,由电动机、联轴器、传动装置、油箱等组成。模拟钻机局部照片如图3所示。
1.2 试验材料
试验所用岩石样品为芝麻白花岗岩,其原始高度为500 mm,外径为1 100 mm,内径为280 mm。对花岗岩取样并在无围压下进行力学性能测试,结果如表1所示。
表 1 花岗岩岩样的基本力学性能参数Table 1. Basic mechanical property parameters of granite samples参数 取值 密度 ρ / (g·cm−3) 2.6 单轴抗压强度 σ / MPa 204.41 弹性模量 E1 / GPa 40.37 泊松比 ε 0.28 黏聚力 E2 / MPa 44.12 内摩擦角 θ / (°) 53.51 冲击试验用靶材是WC-16Co硬质合金,其出厂硬度为84 HRA。试验用PDC齿由国内某公司生产,其4种齿形如图4所示,图4中的3种脊形齿的脊角分别为135°、165°和155°,是在圆形齿的基础上激光切割而成。4种PDC切削齿均使用相同的原材料、粉末配方和烧结参数制备,并且进行了脱钴处理。PDC齿金刚石层截面形貌如图5所示。
1.3 试验方法及流程
1.3.1 耐磨性试验
用CK型立式转塔车床将岩样表面磨平,所用岩样外径为
1100 mm,内径为280 mm,高度为500 mm。调整车床悬臂高度使PDC齿下部与岩样上表面相切,如图6所示,随后再下降0.50 mm,启动转盘,转盘每旋转1圈,悬臂向岩样中心进给1.57 mm,并且保证PDC齿的吃入深度为0.50 mm。冷却水以10 L/min的流量从喷嘴喷向PDC齿,用于模拟钻井液对PDC齿的冷却。在切削过程中PDC齿相对于岩石的切削速度为100 m/min。由于切削速度是定值,因此随着悬臂向岩样中心移动,转盘的转速逐渐加快,悬臂在岩样外径和内径时的转速分别为29和114 r/min。悬臂从岩样外径移动到内径时切削1圈,每个齿均切削30圈,切削完成后测量PDC齿的磨口面积,以此评价PDC齿的耐磨性。1.3.2 落锤冲击试验
首先将需要测试的PDC齿以75°倾角钎焊在夹具上,并将夹具固定于冲击试验机的底座上。在控制柜上输入冲击能量,控制系统依据输入的能量将冲击靶材提升到一定高度,靶材自由落体冲击PDC齿的刃部。冲击靶材与PDC齿接触后会反弹,此时防二冲装置弹出,防止再次下落的冲击靶材与PDC齿接触。起始冲击能量为2 J,后每次冲击能量递加2 J,在冲击过程中记录齿初次产生裂纹的能量和最终失效的能量(以PDC齿表面破损面积 > 30%为失效)。
1.3.3 单齿切削试验
为了减小试验过程的干扰,先将岩样表面磨平,后在岩样表面预先挖出深度适当的凹坑,以模拟不同吃入深度下的切削试验。试验中选择的吃入深度分别为1.0、2.0和3.0 mm,所用岩样外径为
1100 mm,内径为280 mm,高度为500 mm。将PDC齿及夹具固定在转塔车床悬臂下部,调整悬臂位置,使PDC齿移动到预留的凹坑中,打开三向力传感器并启动转盘。设定转盘线速度为20 m/min,使岩样旋转,此时PDC齿以一定吃入深度切削岩样,切削1 000 mm后停止,保存三向力传感器测量数据。1.3.4 室内钻机模拟钻进试验
在MK-7型全尺寸钻头室内模拟钻机的钻进过程中,首先将钻井液注入泥浆桶,以10 MPa的压力和450 L/min的流量确保钻井液能及时清洁井底。随后,将PDC齿钎焊到9.5英寸(24.13 cm)5刀翼测试钻头上,而后将钻杆、随钻测量短节和钻头依次连接,并安装到模拟钻机上。在调整钻头位置后,打开采集软件和水泵。设定钻压范围为10.0~30.0 kN,随后开始旋转钻杆并给进钻头。当压力稳定加载且各项数据稳定后停止进给,关闭水泵并保存测量数据。
2. 试验结果及分析
2.1 PDC齿的耐磨性
在评估不同齿形对PDC齿耐磨性的影响时,利用三维形貌仪测量PDC齿磨损后的磨口面积,从而获得定量的评价结果。4种齿形的磨口形貌如图7所示,磨损面积测量结果如图8所示。图8中:135斧形齿的磨损面积最小,165斧形齿、三刃齿的次之,圆形齿的磨损面积最大,因而齿的耐磨性也有此顺序。因试验中所用PDC齿的原材料和烧结工艺相同,因此可以假设不同齿形的金刚石层具有相同的磨耗比。在圆形齿的基础上利用激光切割或者线切割将其多余部分去除即可得到脊形齿,如图9的蓝色区域展示了圆形齿加工成脊形齿所去除的部分。因此,脊形齿与岩石的接触面积较小,这意味着在切削过程中脊形齿与岩石之间产生的摩擦热较少。
由于PDC中的催化剂Co相对于金刚石相具有更大的热膨胀系数[18],故在摩擦热的作用下PDC齿内部会存在热应力。另外,在高温和Co的催化下,会发生金刚石相向石墨相转变的过程[19],且石墨形式的碳密度较小,进一步增加了磨口的内应力。这2个因素共同作用加速了PDC齿的磨损过程。因此,在PDC齿切削岩石过程中,接触面积较小的脊形齿产生的摩擦热较少,其磨口面积也较小,从而具有更好的耐磨性。
2.2 PDC齿的抗冲击性能
抗冲击性能表示材料在变形和断裂过程中吸收能量的能力。PDC齿抗冲击性能越好,其在钻井过程中遇到钻头振动或非均质地层时,所能承受的冲击载荷越高,发生断裂的可能性越低。因此,提高PDC钻头切削齿的抗冲击性能可有效延长PDC齿的使用寿命。
利用渐进式落锤冲击试验机测试圆形齿和脊形齿的抗冲击性能,PDC齿的断裂能如图10所示,图中的断裂能越大,齿的抗冲击性能越好。齿的几种代表性断口如图11所示。由图10可以看出:除了135斧形齿外,其余脊形齿的抗冲击性能均优于圆形齿的。齿的脊形设计改变了PDC齿的抗冲击性能,当脊角较小时,由于其支撑点缺少支撑材料,PDC齿的抗冲击性能略有降低[20];当脊角增大时,PDC齿的抗冲击性能提升。
2.3 单齿切削时的切向力和法向力
在PDC齿切削花岗岩的过程中,产生的切向力和法向力是影响其切削性能的关键参数。切向力代表了PDC齿在破碎岩石时所需的切削力,是唯一做功的力,与钻井过程中施加的扭矩密切相关;而法向力则用于维持PDC齿的吃入深度,相当于钻井过程中的钻压。由于PDC齿径向的受力较小,且在切削过程中不做功,因此将重点分析PDC齿切削花岗岩时的切向力和法向力,并探讨不同齿形对这些力的影响。
图12为不同吃入深度下的切削力。通过图12可发现,脊形齿切削岩石时所需的切向力和维持吃入深度的法向力均小于圆形齿的。对于三刃齿和斧形齿而言,这一结果可通过以下机理解释:齿面突出的脊率先与岩石接触,岩石与脊的接触点产生应力集中,此处的岩石内部率先产生裂纹,并沿PDC齿前进方向扩展;脊角越小岩石内部的应力集中就越明显,所需的切削力就越小。因此,135斧形齿的切向力小于165斧形齿的,其法向力也是如此。同时,虽然三刃齿的脊角为155°,小于165斧形齿的165°,但是其“脊”与齿侧面不垂直,因而其脊角不能和斧形齿的脊角直接对比,也不符合脊角越小切削力越小的规律。
总之,在钻井时相同的钻压下脊形齿PDC钻头具有更高的吃入深度,且机械钻速更快;同时由于脊形齿切向力更小,脊形齿钻头所需的扭矩更小。此外,脊形齿在岩石切削过程中能够更好地排渣,减少切削面的堵塞现象,从而降低了切向力需求。
2.4 模拟钻机钻进测试
为了验证单齿切削试验中获得的切向力和法向力数据的准确性,并进一步探究其在全尺寸钻头钻进岩石试验中的适用性,进行全尺寸钻头模拟钻进试验,旨在模拟实际的钻井工况,评估脊形齿在实际钻井条件下的性能。
随钻测量并记录模拟钻进过程中的钻压与机械钻速,每种齿形共有4~5个数据点;且为了更加清楚地观测机械钻速与钻压的关系,以虚线的形式添加了其变化趋势线,结果如图13所示。由图13可知:圆形齿钻头能承受的钻压范围是10.7~26.4 kN,而脊形齿钻头承受钻压较高,为12.0~30.0 kN;在共同钻压区间内,圆形齿的机械钻速最低,135斧形齿的机械钻速最高;165斧形齿与三刃齿钻头的机械钻速在钻压为20.0 kN附近发生了反转,钻压≤20.0 kN时三刃齿钻头的机械钻速较高,钻压>20.0 kN时则相反。
另外,通过与单齿切削试验对比分析可以确定:单齿切削试验中获得的切削力和法向力数据与全尺寸钻头模拟钻井的试验结果基本一致,单齿切削试验的结论可以推广到全尺寸钻头的切削过程中。
3. 结论
(1)试验所用的脊形齿是在圆形齿的基础上激光切割或线切割而成,在切削岩石时其与岩石的接触面积更小,切削岩石过程中产生的热量更少,因而其产生的磨口面积更小,耐磨性较高。
(2)165斧形齿和三刃齿与冲击靶材接触点下部有足够的金刚石材料支撑,因此其抗冲击性能优于圆形齿的;而135斧形齿齿面过于尖锐,其冲击点缺少支撑材料,因而更容易失效,导致其抗冲击性能降低。
(3)单齿切削花岗岩试验结果表明,在不同吃入深度下,不同PDC齿的切向力与法向力具有一致性,从高到低依次是圆形齿、三刃齿、165斧形齿和135斧形齿。斧形齿的切向力、法向力与脊角密切相关,脊角越小,脊越突出,在岩石内部形成的应力集中越大,更容易破碎岩石和压入岩石,同时脊形设计更利于排出岩屑。
(4)全尺寸钻头模拟钻进试验结果表明,在相同的钻井参数下钻进花岗岩时,135斧形齿的机械钻速最快,其次是165斧形齿和三刃齿,圆形齿的机械钻速最慢,且不能承受较高的钻压。这与单齿切削结果具有一致性,也证明单齿切削试验结果可以推广到全尺寸钻头切削过程中。
(5)采用脊形齿可以降低切削过程中的能耗,在难吃入地层选择小脊角的脊形齿可以提高破岩效率,从而提高钻井效率。
-
表 1 花岗岩岩样的基本力学性能参数
Table 1. Basic mechanical property parameters of granite samples
参数 取值 密度 ρ / (g·cm−3) 2.6 单轴抗压强度 σ / MPa 204.41 弹性模量 E1 / GPa 40.37 泊松比 ε 0.28 黏聚力 E2 / MPa 44.12 内摩擦角 θ / (°) 53.51 -
[1] SCOTT D. A bit of history: Overcoming early setbacks, PDC bits now drill 90%-plus of worldwide footage [J]. Drilling Contractor,2015,71(4):60-68. [2] 张明杰, 李国军, 郭书生, 等. 随钻测压技术在高温高压大斜度气井中的应用 [J]. 新疆石油天然气,2012,8(3):45-47. doi: 10.3969/j.issn.1673-2677.2012.03.010ZHANG Mingjie, LI Guojun, GUO Shusheng, et al. Application of formation pressure testing while drilling in HTHP high deviated gas well in south sea [J]. Xinjang Oil and Gas,2012,8(3):45-47. doi: 10.3969/j.issn.1673-2677.2012.03.010 [3] 王扩军, 孙浮, 石明江, 等. 超深井稠油试油技术开发与应用 [J]. 新疆石油天然气,2008(1):59-63,111. doi: 10.3969/j.issn.1673-2677.2008.01.014WANG Kuojun, SUN Fu, SHI Mingjiang, et al. Technology development of heavy oil testing in ultra-deep well and its application [J]. Xinjang Oil and Gas,2008(1):59-63,111. doi: 10.3969/j.issn.1673-2677.2008.01.014 [4] 冯国良, 解忠义. 高温高压超深探井钻井技术在费尔干纳盆地的研究与应用 [J]. 新疆石油天然气,2011,7(4):21-27. doi: 10.3969/j.issn.1673-2677.2011.04.006FENG Guoliang, XIE Zhongyi. Research on drilling engineering technology under high temperature and high pressure at extra deep exploration well in fergana basin and its application [J]. Xinjang Oil and Gas,2011,7(4):21-27. doi: 10.3969/j.issn.1673-2677.2011.04.006 [5] 王赞, 王晓琪, 陈立强, 等. 渤海油田钻井降本增效技术现状与展望 [J]. 新疆石油天然气,2022,18(1):66-72. doi: 10.12388/j.issn.1673-2677.2022.01.011WANG Zan, WANG Xiaoqi, CHEN Liqiang, et al. Status and prospect of technologies to reduce cost and increase efficiency for drilling in bohai oilfield [J]. Xinjang Oil and Gas,2022,18(1):66-72. doi: 10.12388/j.issn.1673-2677.2022.01.011 [6] MIESS D, RAI G. Fracture toughness and thermal resistance of polycrystalline diamond compacts [J]. Materials Science and Engineering A,1996,209(1/2):270-276. doi: 10.1016/0921-5093(95)10105-5 [7] FLOOD G M. Dense packing particle size distribution for PDC cutters: US11279002B2 [P]. 2022-03-22. [8] 孙伟, 赵海峰, 张天翔, 等. 提高金刚石复合片抗冲击性能的试验研究 [J]. 钻采工艺,2018,41(6):87. doi: 10.3969/J.ISSN.1006-768X.2018.06.25SUN Wei, ZHAO Haifeng, ZHANG Tianxiang, et al. Experimental study on how to improve impact resistance of polycrystalline diamond compact [J]. Drilling and Production Technology,2018,41(6):87. doi: 10.3969/J.ISSN.1006-768X.2018.06.25 [9] RAHMANI R, PASTUSEK P, YUN G, et al. Investigation of geometry and loading effects on PDC cutter structural integrity in hard rocks [J]. SPE Drilling and Completion,2020,36(1):199598. doi: 10.2118/199598-MS [10] 刘伟吉, 阳飞龙, 董洪铎, 等. 异型PDC齿混合切削破碎花岗岩特性研究 [J]. 工程力学,2023,40(3):245-256. doi: 10.6052/j.issn.1000-4750.2021.10.0761LIU Weiji, YANG Feilong, DONG Hongze, et al. Investigate on the mixed-cutting of specially-shaped pdc cutters in granite [J]. Engineering Mechanics,2023,40(3):245-256. doi: 10.6052/j.issn.1000-4750.2021.10.0761 [11] 杨灿, 王鹏, 饶开波, 等. 大港油田页岩油水平井钻井关键技术 [J]. 石油钻探技术,2020,48(2):34-41. doi: 10.11911/syztjs.2020036YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the dagang oilfield [J]. Petroleum Drilling techniques,2020,48(2):34-41. doi: 10.11911/syztjs.2020036 [12] 邹德永, 潘龙, 崔煜东, 等. 斧形PDC切削齿破岩机理及试验研究 [J]. 石油机械,2022,50(1):34-40. doi: 10.16082/j.cnki.issn.1001-4578.2022.01.005ZOU Deyong, PAN Long, CUI Yudong, et al. Rock breaking mechanism and experimental study of axe-shaped pdc cutter [J]. Petroleum Machinery,2022,50(1):34-40. doi: 10.16082/j.cnki.issn.1001-4578.2022.01.005 [13] CRANE D, ZHANG Y, DOUGLAS C, et al. Innovative PDC cutter with elongated ridge combines shear and crush action to improve PDC bit performance: SPE middle east oil & gas show and conference [C]. Chengdu: SPE, 2017. [14] 孔栋梁. 底砾岩地层PDC钻头损坏机理及钻头优化设计研究 [D]. 青岛: 中国石油大学(华东), 2011.KONG Dongliang. Research on damage mechanism and optimization design of PDC bit in bottom conglomerate formation [D]. Qingdao: China University of Petroleum (East China), 2011. [15] 赵东鹏, 马姗姗, 牛同健, 等. 石油钻探用非平面聚晶金刚石复合片的开发 [J]. 金刚石与磨料磨具工程,2017,37(6):49-52. doi: 10.13394/j.cnki.jgszz.2017.6.0009ZHAO Dongpeng, MA Shanshan, NIU Tongjian. Research of polycrystalline diamond compact having non-planar surface for oil drilling [J]. Diamond and Abrasives Engineering,2017,37(6):49-52. doi: 10.13394/j.cnki.jgszz.2017.6.0009 [16] 刘建华, 令文学, 王恒. 非平面三棱形PDC齿破岩机理研究与现场试验 [J]. 石油钻探技术,2021,49(5):46-50. doi: 10.11911/syztjs.2021040LIU Jianhua, LING Wenxue, WANG Heng. Study on rock breaking mechanism and field test of triangular prismatic PDC cutters [J]. Petroleum Drilling Techniques,2021,49(5):46-50. doi: 10.11911/syztjs.2021040 [17] 李宁, 周波, 文亮, 等. 塔里木油田库车山前砾石层提速技术研究 [J]. 钻采工艺,2020,43(2):143. doi: 10.3969/J.ISSN.1006-768X.2020.02.39LI Ning, ZHOU Bo, WEN Liang, et al. Research on speed-increasing technology of gravel layer in Kuqa piedmont of Tarim Oilfield [J]. Drilling and Production Technology,2020,43(2):143. doi: 10.3969/J.ISSN.1006-768X.2020.02.39 [18] HUANG H, ZHAO B, WEI W, et al. Effect of cobalt content on the performance of polycrystalline diamond compacts [J]. International Journal of Refractory Metals and Hard Materials,2020,92:105312. doi: 10.1016/j.ijrmhm.2020.105312 [19] WESTRAADT J E, SIGALAS I, NEETHLING J H. Characterisation of thermally degraded polycrystalline diamond [J]. International Journal of Refractory Metals and Hard Materials,2015,48:286-292. doi: 10.1016/j.ijrmhm.2014.08.008 [20] WEI J, LIU W, GAO D. Effect of cutter shape on the resistance of PDC cutters against tip impacts [J]. SPE Journal,2022,27(5):3035-3050. doi: 10.2118/209809-PA -