[1] |
MA F, SHI Z, LIU P, et al. Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working [J]. Materials Characterization,2016,120:304-310. doi: 10.1016/j.matchar.2016.09.010
|
[2] |
MA F, ZHOU J, LIU P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites [J]. Materials Characterization,2017,127:27-34. doi: 10.1016/j.matchar.2017.02.004
|
[3] |
WANG R, GU D, HUANG G, et al. Multilayered gradient titanium-matrix composites fabricated by multi-material laser powder bed fusion using metallized ceramic: Forming characteristics, microstructure evolution, and multifunctional properties [J]. Additive Manufacturing,2023,62:103407. doi: 10.1016/j.addma.2023.103407
|
[4] |
XIONG Y, ZHANG F, HUANG Y, et al. Multiple strengthening via high-entropy alloy particle addition in titanium matrix composites fabricated by spark plasma sintering [J]. Materials Science and Engineering A,2022,859:144235. doi: 10.1016/j.msea.2022.144235
|
[5] |
YU H L, ZHANG W, Wang H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding [J]. Journal of Alloys and Compounds,2017,701:244-255. doi: 10.1016/j.jallcom.2017.01.084
|
[6] |
HEYDARI L, LIETOR P F, CORPAS-IGLESIAS F A, et al. Ti(C, N) and WC-based cermets: A review of synthesis, properties and applications in additive manufacturing [J]. Materials,2021,14(22):6786. doi: 10.3390/ma14226786
|
[7] |
HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: An overview [J]. Composites Part A: Applied Science and Manufacturing,2019,121:418-438. doi: 10.1016/j.compositesa.2019.04.005
|
[8] |
HAN C, BABICHEVA R, CHUA J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Additive Manufacturing,2020,36:101466. doi: 10.1016/j.addma.2020.101466
|
[9] |
JANG J H, LEE C, HEO Y, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Materialia,2012,60(1):208-217. doi: 10.1016/j.actamat.2011.09.051
|
[10] |
刘战强. 先进刀具设计技术: 刀具结构, 刀具材料与涂层技术 [J]. 航空制造技术,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002LIU Zhanqiang. Advanced tool design technology: Tool structure, tool material and coating technology [J]. Aeronautical Manufacturing Technology,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002
|
[11] |
李少峰, 刘维良, 彭牛生, 等. 金属陶瓷刀具材料研究进展 [J]. 陶瓷学报,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032LI Shaofeng, LIU Weiliang, PENG Niusheng, et al. Research progress of cermet tool materials [J]. Chinese Journal of Ceramics,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032
|
[12] |
张宝国, 刘战强, 张丽, 等. 聚晶金刚石 (PCD) 刀具在活塞加工中的应用 [J]. 工具技术,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025ZHANG Baoguo, LIU Zhanqiang, ZHANG Li, et al. Apply of PCD cutting tool in machining piston [J]. Tool Technology,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025
|
[13] |
OH N R, LEE S K, HWANG K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite [J]. Scripta Materialia,2016,112:123-127. doi: 10.1016/j.scriptamat.2015.09.028
|
[14] |
李艳国, 王明阳, 邹芹. 高熵碳/氮/硼化物陶瓷的增韧研究进展 [J]. 燕山大学学报,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001LI Yanguo, WANG Mingyang, ZOU Qin. Progress in toughening of high-entropy non-oxide ceramics [J]. Journal of Yanshan University,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001
|
[15] |
LI X, XIANG J, HU W. {111 twinning structure and interfacial energy in nonstoichiometric TiCx with ordered carbon vacancies [J]. Materials Characterization,2014,90:94-98. doi: 10.1016/j.matchar.2014.01.026
|
[16] |
YI D, YU P, HU B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites [J]. Materials & Design,2013,52:572-579. doi: 10.1016/j.matdes.2013.05.097
|
[17] |
薛建新, 游顺英, 虞建明. 聚晶金刚石 (PCD) 刀具的开发与应用 [J]. 工具技术,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016XUE Jianxin, YOU Shunying, YU Jianming. Development and application of polycrystalline diamond (PCD) tool [J]. Tool Technology,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016
|
[18] |
冯可桃, 吕健, 阚高辉, 等. 烧结过程氮气分压对(Ti, Nb)(C, N)基金属陶瓷组织和性能的影响 [J]. 稀有金属与硬质合金,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08FENG Ketao, LV Jian, KAN Gaohui, et al. Effect of nitrogen partial pressure during sintering on microstructure and properties of (Ti, Nb)(C, N) -based cermets [J]. Rare Metals and Cemented Carbide,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08
|
[19] |
KHAN H, YERRAMILLI A S, D'OLIVEIRA A, et al. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD [J]. Canadian Journal of Chemical Engineering,2020,98(6):1255-1266. doi: 10.1002/cjce.23747
|
[20] |
CARDINAL S, MALCHERE A, GARNIER V, et al. Microstructure and mechanical properties of TiC-TiN based cermets for tools application [J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):521-527. doi: 10.1016/j.ijrmhm.2008.10.006
|
[21] |
杨天恩, 熊计, 李体军, 等. 球磨时间对Ti(C0.7, N0.3)晶粒及Ti(C0.7, N0.3)基金属陶瓷组织和性能的影响 [J]. 工程科学与技术,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016YANG Tianen, XIONG Ji, LI Tijun, et al. Effect of milling time on Ti(C0.7, N0.3) and microstructure and properties of Ti(C0.7, N0.3)-based cermets [J]. Engineering Science and Technology,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016
|
[22] |
单忠德, 朱福先. 应用 PCD 刀具铣削砂型的刀具磨损机理和预测模型 [J]. 机械工程学报,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124SHAN Zhongde, ZHU Fuxian. Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould [J]. Chinese Journal of Mechanical Engineering,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124
|
[23] |
葛英飞, 边卫亮, 傅玉灿, 等. PCD 刀具高速铣削 SiCp/Al 复合材料切削温度试验研究 [J]. 工具技术,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007GE Yingfei, BIAN Weiliang, FU Yucan, et al. Experimental study on temperature during high speed milling of SiCp/Al composites using PCD tool [J]. Tool & Technology,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007
|
[24] |
李来来, 金头男, 符寒光, 等. 激光熔覆原位合成(Ti, Nb)C强化Ni45涂层的微观组织与耐磨性研究 [J]. 热加工工艺,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220LI Lailai, JIN Tounan, FU Hanguang, et al. Study on microstructure and wear resistance of Ni45 coatings strengthened by in-situ synthesis (Ti, Nb)C by laser cladding [J]. Hot Working Technology,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220
|
[25] |
邹芹, 王鹏, 徐江波, 等. 金属基自润滑复合材料固体润滑剂研究进展 [J]. 燕山大学学报,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003ZOU Qin, WANG Peng, XU Jiangbo, et al. Research progress of solid lubricants of metal matrix self-lubricating composites [J]. Journal of YanShan University,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003
|
[26] |
武美玲, 尹育航, 丁冬海, 等. 自蔓延高温合成法制备金刚石工具材料研究现状 [J]. 材料热处理学报,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500WU Meiling, YIN Yuhang, DING Donghai, et al. Research status of diamond tool materials prepared by self-propagating high-temperature synthesis [J]. Journal of Materials Heat Treatment,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500
|
[27] |
邹芹, 李壮, 李艳国, 等. 中熵碳化物陶瓷TiC0.4/VC/NbC结合的WC基硬质合金合成与性能 [J]. 中国有色金属学报,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353ZOU Qin, LI Zhuang, LI Yanguo, et al. Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics [J]. The Chinses Journal of Nonferrous Metals,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353
|
[28] |
ZHANG Z, GENG C, KE Y, et al. Processing and mechanical properties of nonstoichiometric TiC (0.3≤ x ≤0.5) [J]. Ceramics International,2018,44(15):18996-19001. doi: 10.1016/j.ceramint.2018.07.141
|
[29] |
邝宏有, 戴炳蔚, 吴育藩. WC-11%(Ti, W)(Ta, Nb)C-11%Co合金制取过程中碳量和球磨时间的优化 [J]. 硬质合金,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009KUANG Hongyou, DAI Bingwei, WU Yufan. Optimization of carbon content and ball milling time in Preparation of WC-11%(Ti, W)(Ta, Nb)C-11%Co alloy [J]. Journal of Cemented Carbide,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009
|
[30] |
项忠楠, 李战江, 黄水根, 等. 烧结温度对(Ti,W,Mo,Nb)(C,N)-(Co,Ni)金属陶瓷组织结构和性能的影响 [J]. 稀有金属材料与工程,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228XIANG Zhongnan, LI Zhanjiang, HUANG Shuigen, et al. Effect of sintering temperature on microstructure and properties of (Ti, W, Mo, Nb)(C, N)-(Co, Ni) cermet [J]. Rare Metal Materials and Engineering,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228
|
[31] |
许育东, 刘宁, 石敏, 等. (Ti, Mo, W, Ta, V, Nb)(C, N) 多元陶瓷相的价电子结构 [J]. 硅酸盐通报,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002XU Yudong, LIU Ning, SHI Min, et al. Valence electron structure (VES) of (Ti, Mo, W, Ta, V, Nb)(C, N) ceramic multiphase in cermets [J]. Bulletin of Silicate,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002
|