CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Challenges of future high-precision polishing methods for hard-to-process materials by the fusion of environmental control and plasma technology

DOI K. Toshiro AIDA Hideo OHNISHI Osamu YIN Shaohui REN Yinghui

土肥俊郎, 會田英雄, 大西修, 尹韶辉, 任莹晖. 环境控制与等离子体技术融合对未来高精密抛光难加工材料所构成的挑战[J]. 金刚石与磨料磨具工程, 2022, 42(6): 637-649. doi: 10.13394/j.cnki.jgszz.2022.7001
引用本文: 土肥俊郎, 會田英雄, 大西修, 尹韶辉, 任莹晖. 环境控制与等离子体技术融合对未来高精密抛光难加工材料所构成的挑战[J]. 金刚石与磨料磨具工程, 2022, 42(6): 637-649. doi: 10.13394/j.cnki.jgszz.2022.7001
DOI K. Toshiro, AIDA Hideo, OHNISHI Osamu, YIN Shaohui, REN Yinghui. Challenges of future high-precision polishing methods for hard-to-process materials by the fusion of environmental control and plasma technology[J]. Diamond & Abrasives Engineering, 2022, 42(6): 637-649. doi: 10.13394/j.cnki.jgszz.2022.7001
Citation: DOI K. Toshiro, AIDA Hideo, OHNISHI Osamu, YIN Shaohui, REN Yinghui. Challenges of future high-precision polishing methods for hard-to-process materials by the fusion of environmental control and plasma technology[J]. Diamond & Abrasives Engineering, 2022, 42(6): 637-649. doi: 10.13394/j.cnki.jgszz.2022.7001

Challenges of future high-precision polishing methods for hard-to-process materials by the fusion of environmental control and plasma technology

doi: 10.13394/j.cnki.jgszz.2022.7001
  • 摘要: 以碳化硅、氮化镓和金刚石为代表的宽禁带半导体材料是典型的难加工材料。本研究中,设计2种基于化学机械抛光(CMP)的加工设备,以开发高效高质量加工此类晶体衬底的新技术,并研究讨论使用新设备时的加工机理和难加工衬底的加工特征。加工设备的原型机分别为封闭箱式(closed chamber-type)环境控制CMP设备和等离子体熔融(plasma fusion)CMP设备。在前者中引入光催化反应,并在高压氧气环境下增加紫外辐射,试图提高加工效率。在后者中预期实现常压等离子体化学蒸发加工(P-CVM)和CMP各自优势的协同效应,尤其适合高硬度、极稳定的金刚石衬底。在验证设备加工机理的过程中,随加工过程进行,在极限表面(extreme surface)上形成了如水合物膜或氧化物膜的反应产物。因此,引入紫外辐射的箱式CMP设备在高压氧气环境下效率极高;而对等离子熔融CMP设备,在氧气氛围下,同时开展P-CVM和CMP时可实现对金刚石晶片的高效加工。通过对加工机理进行研究,提出由伪自由基场(pseudo radical filed)/反应产物形成和新表面接触磁流变抛光这两步构成的“循环处理方法”,可实现对难加工材料的高效率加工。

     

  • Figure  1.  Comparison of processing time of each substrate (SiC, GaN, and diamond), assuming that processing conditions of Si were applied

    Figure  2.  Relationship between removal rate and processing pressure in colloidal silica polishing / CMP for various materials

    Figure  3.  Example of processing characteristics of GaN substrate

    Figure  4.  Relationship between removal rate and pH value of slurry in SiC substrate (Si surface side) by colloidal silica polishing/CMP

    Figure  5.  Annealing effect in colloidal silica/CMP characteristics of GaN substrate (CMP characteristics of GaN (Ga surface side) with colloidal silica after annealed GaN substrate)

    Figure  6.  Comparison of removal rate of single crystal GaN and Ga2O3 substrate with colloidal silica polishing/CMP

    Figure  7.  Comparison of removal rate of SiC substrate with and without plasma irradiation

    SiC substrate: Si surface side, Slurry: colloidal silica/pH 2.2

    Figure  8.  Proposal of chamber-type controlled atmosphere CMP method and machine–Concept of atmosphere-controlled CMP

    Figure  9.  Photograph of prototype chamber-type CMP apparatus and internal structure diagram

    Figure  10.  Rate of increase in GaN substrate (Ga surface side) removal rate

    Pressure inside chamber: 500 kPa with oxygen gas

    Figure  11.  Example of CMP of SiC substrate (Si surface side) under atmosphere of high-pressure air and oxygen gas (pressure inside chamber: 500 kPa)

    Figure  12.  Concept and structural schematic diagram showing the processing principle of plasma fusion CMP system (top right photo: plasma fusion CMP system)

    Figure  13.  Plasma fusion CMP characteristics of various substrates (removal rate of GaN, SiC and diamond for CMP, P-CVM, and plasma fusion CMP)

    Figure  14.  Relationship between surface roughness (Ra) reduction ratio and processing methods (CMP only, P-CVM only and plasma fusion CMP) after each substrate of GaN, SiC and diamond for 1 h

    Figure  15.  Relationship between processing rate and supplied power/reactive gases (O2, SF6) in P-CVM of diamond

    Figure  16.  Ultra-precision machining process for high-efficiency machining of next generation hard and brittle materials (Eample of proposal for future work based on the mechanism in this research)

  • [1] DOI T, MARINESCU I D, KUROKAWA S. Advances in CMP polishing technologies [M]. Amsterdam: Elsevier, 2012, 15-19.
    [2] MARINESCU I D,DOI T, UHLMANN E. Handbook of ceramics grinding and polishing (2nd edition) [M]. Amsterdam: Elsevier, 2015, 275-315.
    [3] MARINESCU I D, UHLMANN EDOI T. Handbook of ceramics lapping and polishing [M]. New York: CRC Press (Taylor & Francis Group), 2006, 341-477.
    [4] DOI T. Details of semiconductor CMP technology [M]. Tokyo: Kogyo Chosakai Publishing Co., 2001, 13-38.
    [5] ITRS 2005 Edition. http://strj-jeita.elisasp.net/pdf_ws_2005nendo/9A_WS2005IRC_Ishiuchi.pdf
    [6] TAGAMI M. Metallization challenges in 3D flash memory [C]// The Planarization and CMP Technical Committee, The Japan Society for Precision Engineering. 2022 Proceedings of Meeting of Planarization CMP Committee. Tokyo: [s.n.], 2023: 109.
    [7] CHEN R, LI Y C, CAI J M, et al. Atomic level deposition to extend Moore's law and beyond [J]. International Journal of Extreme Manufacturing,2020(2):022002.
    [8] NAKAMURA S, MUKAI T, SENOH M, et al. Thermal annealing effects on P-type Mg-doped GaN films [J]. Japanese Journal of Applied Physics,1992,31(2B):L139. doi: 10.1143/JJAP.31.L139
    [9] DOI T. Current status and future prospects of GaN substrates for green devices [J]. Sensors and Materials,2013,25(3):141-154. doi: 10.18494/SAM.2013.854
    [10] DOI T. Next-generation, super-hard-to-process substrates and their high-efficiency machining process technologies used to criate innovative devices [J]. International Journal of Automation Technology,2018,12(2):145-153. doi: 10.20965/ijat.2018.p0145
    [11] DOI T K, KAGEYAMA T, KASAI T, et al. A new processing technique of GaAs single crystals and its mechanism [J]. International Journal of the Japan Society for Precision Engineering,1996,30(1):16-22.
    [12] DOI T, MARINESCU I D, KUROKAWA S. Advances in CMP polishing technologies [M]. Amsterdam: Elsevier, 2011.
    [13] AIDA H, KIM S W, IKEJIRI K, et al. Precise mechanical polishing of brittle materials with free diamond abrasives dispersed in micro-nano-bubble water [J]. Precision Engineering,2014,40:81-86. doi: 10.1016/j.precisioneng.2014.10.008
    [14] NAKAJIMA K. Tribomicro plasma [J]. Journal of the Japan Society for Abrasive Technology,2007,51(8):453-456.
    [15] SANO Y, WATANABE M, YAMAMURA K, et al. Polishing characteristics of silicon carbide by plasma chemical vaporization machining [J]. Japanese Journal of Applied Physics, 2006, 45(10s): 8277-8280. Doi 10.1143/JJAP.45.8277
    [16] DOY/DOI T K, ICHIKAW K, PHILIPOSSIAN A., A new atmosphere control bell-jar type CMP machine and its characteristics with optoelectronics materials [J]. Proceedings of AUSTCERAM, 2002: 249.
    [17] DOI T, SANO Y, KUROKAWA S, et al. Study on high efficiency precision machining method of advanced hard working substrate (report 1) [J]. Proceedings of JSPE, Spring Meeting,2013:639-640. doi: 10.11522/pscjspe.2013S.0.639.0
    [18] DOI T. Impact of novel bell-jar type CMP machine on CMP characteristics of optoelectronics materials [J]. Proceedings of ICM/NFT’06, 2006: 1.
    [19] SANO Y, DOI T, KUROKAWA S, et al. Study on high efficiency precision machining method of advanced hard working substrate (report 2) [J]. Proceedings of JSPE, Spring Meeting,2013:641-642. doi: 10.11522/pscjspe.2013S.0.641.0
    [20] DOY/DOI T. Colloidal silica polishing based on micromechanical removal action and its applications [J]. Sensors and Materials,1988,1(3):153-168.
    [21] KOYAMA K, AIDA H, UNEDA M, et al. Effects of N-face finishing on geometry of double-side polished GaN substrate [J]. International Journal of Automation Technology,2014,8(1):121-127. doi: 10.20965/ijat.2014.p0121
    [22] AIDA H, TAKEDA H, DOI T, et al. Chemical mechanical polishing of gallium nitride with colloidal silica [J]. Journal of The Electrochemical Society,2011,158:H1206-H1212. doi: 10.1149/2.024112jes
    [23] AIDA H, DOI T, YAMAZAKI T, et al. Progress and challenges for chemical mechanical polishing of gallium nitride [J]. Materials Research Society Symposium Proceedings, 2013,1560:875-884. doi: 10.1557/opl.2013.875
    [24] YAMAMURA K, TAKIGUCHI T, UEDA M, et al. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface [J]. CIRP Annals - Manufacturing Technology,2011,60:571-574. doi: 10.1016/j.cirp.2011.03.072
    [25] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12(Suppl.2):S41-S46. doi: 10.1016/j.cap.2012.02.016
    [26] De NARDIS D, DOI T, HISKEY B, et al. Modeling copper CMP removal rate dependency on wafer pressure, velocity, and dissolved oxygen concentration [J]. Journal of The Electrochemical Society,2006,153(5):G428-G436. doi: 10.1149/1.2180627
    [27] MARINESCU I D,DOI T, UHLMANN E. Handbook of ceramics grinding and polishing (2nd edition) [M]. Amsterdam: Elsevier, 2015, 449.
    [28] DOI T. An innovative processing concept of SiC, GaN and diamond substrates for the next generation semiconductors, and its future perspectives [C]// Production Engineering Institution, The Chinese Mechanical Engineering Society. Proceedings of the 14th China-Japan International Conference on Ultra-Precision Machining Process (CJUMP2018). Harbin: [s.n.], 2018: 23
    [29] SANO Y, SHIOZAWA K, DOI T, et al. High-efficiency planarization method combining mechanical polishing and atmospheric-pressure plasma etching for hard-to-machine semiconductor substrates [J]. Semconductor Substrates, The Japan Society of Mechanical Engineering (JSME),2016,3(1):1-9.
    [30] OYAM K, DOI K T. Study on a novel CMP/P-CVM fusion processing system (type-b) and its basic characteristics [C]// The Planarization and CMP Technical Committee, The Japan Society for Precision Engineering. Proceeding of International Conference on Planarization Technology (ICPT2014). Kobe: [s.n.], 2014.
    [31] NISHIZAWA H, DOI T. Study on a novel CMP/P-CVM fusion processing system (type B) and its basic characteristics [C]// The Planarization and CMP Technical Committee, The Japan Society for Precision Engineering. 2014 Proceedings of Meeting of Planarization CMP Committee. Kobe: [s.n.], 2014.
    [32] TAKEDA H, DOI T, KIM S W, et al. High efficiency processing and its processing mechanism of large area diamond substrate due to plasma fusion CMP [J]. IEICE Technical Report,2017,117(334):1-6.
    [33] DOI T. Design and novel processing method “plasma fusion CMP® machine” - Processing characteristics of SiC, GaN & diamond substrates [C]// Southern University of Science and Technology. Proceedings of the Symposium on Ultra-High-Speed Machining and Machining of Hard & Brittle Materials. Shenzhen: [s.n.], 2019.
    [34] MAUER G, VAßEN R, STÖVER D. Plasma and particle temperature measurements in thermal spray: Approaches and applications [J]. Journal of Thermal Spray Technology,2010,20:391-406. doi: 10.1007/s11666-010-9603-z
    [35] SANO Y, WATANABE M, KATO T, et al. Temperature dependence of plasma chemical vaporization machining of silicon and silicon carbide [J]. Materials Science Forum,2009,600-603:847-850. doi: 10.4028/www.scientific.net/MSF.600-603.847
    [36] NISHIZAWA H, DOI T, OYAMA K, et al. Design and test of innovative plasma fusion CMP equipment [J]. Proceedings of JSPE, Spring Meeting,2016:381-382. doi: 10.11522/pscjspe.2016S.0_381
    [37] SANO Y, DOI T, KUROKAWA S, et al. Dependence of GaN removal rate of plasma chemical vaporization machining on mechanically introduced damage [J]. Sensors and Materials,2014,26(6):429-434.
    [38] AIDA H, DOI T. Polishing of difficult-to-process single crystals by next-generation processing and its prospects [J]. Shinku / Vacuum Journal,2018,7(11):11-14.
    [39] REN Y, LI K, LI W, et al. Research on a UV-assisted chemical modification strategy for monocrystalline silicon [J]. Mechanical Science,2021,12(1):133-141. doi: 10.5194/ms-12-133-2021
    [40] DOI T K, SANO Y, KUROWAKA S, et al. Novel chemical mechanical polishing/plasma-chemical vaporization machining (CMP/P-CVM) combined processing of hard-to-process crystals based on innovative concepts [J]. Sensors and Materials,2014,26(6):403-415. doi: 10.18494/SAM.2014.978
    [41] LUO H, GUO M, YIN S, et al. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing [J]. Applied Surface Science,2018,444:569-577. doi: 10.1016/j.apsusc.2018.03.091
    [42] REN Y, LI K, LI W, et al. A hybrid chemical modification strategy for monocrystalline silicon microgrinding: Experimental investigation and synergistic mechanism [J]. Chinese Journal of Aeronautics,2022. doi: 10.1016/j.cja.2022.11.004
    [43] YIN Shaohui, GONG Sheng, HE Bowen, et al. Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface [J]. Journal of Mechanical Engineering,2018,54(21):205-211. doi: 10.3901/JME.2018.21.205
    [44] ZHANG B, YIN J F. The 'skin effect' of subsurface damage distribution in materials subjected to high-speed machining [J]. International Journal of Extreme Manufacturing,2019,1:012007. doi: 10.1088/2631-7990/ab103b
  • 加载中
图(16)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  299
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2022-11-16
  • 录用日期:  2022-11-19
  • 网络出版日期:  2023-01-14
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回