CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削SiCp/6005Al复合材料的PCD刀具磨损

林洁琼 贾茹 周岩 谷岩

林洁琼, 贾茹, 周岩, 谷岩. 切削SiCp/6005Al复合材料的PCD刀具磨损[J]. 金刚石与磨料磨具工程, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143
引用本文: 林洁琼, 贾茹, 周岩, 谷岩. 切削SiCp/6005Al复合材料的PCD刀具磨损[J]. 金刚石与磨料磨具工程, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143
LIN Jieqiong, JIA Ru, ZHOU Yan, GU Yan. PCD tool wear in cutting SiCp/6005Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143
Citation: LIN Jieqiong, JIA Ru, ZHOU Yan, GU Yan. PCD tool wear in cutting SiCp/6005Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143

切削SiCp/6005Al复合材料的PCD刀具磨损

doi: 10.13394/j.cnki.jgszz.2022.0143
基金项目: 国家自然科学基金(U19A20104)
详细信息
    作者简介:

    通信作者:林洁琼,女,1969年生,教授、博士生导师。主要研究方向:精密加工。E-mail:linjieqiong@ccut.edu.cn

  • 中图分类号: TG51;TG71;TG58

PCD tool wear in cutting SiCp/6005Al composites

  • 摘要:

    为研究SiCp/6005Al切削时的刀具磨损机制及刀具磨损对切削力、切削温度、工件表面质量的影响,进行不同转速V和不同进给速度f下的切削试验,观察每组试验刀具切削后的磨损形貌,并通过监测动态切削力和切削温度来探究刀具的磨损机制。结果表明:工件转速提高使切削温度明显升高,但对切削力的影响很小;进给速度提高使切削力明显升高,而切削温度的变化范围较小。改变进给速度带来的力载荷变化是影响前刀面磨损的主要因素,改变工件转速带来的切削温度变化是影响后刀面磨损的主要因素。此外,刀具磨损是磨粒磨损、黏结磨损的综合作用结果,且刀具磨损会对切削力、切削温度和加工表面质量产生不利影响。

     

  • 图  1  试验平台

    Figure  1.  Experimental platform

    图  2  切削温度曲线

    Figure  2.  Cutting temperature curve

    图  3  主切削力曲线

    Figure  3.  Main cutting force curve

    图  4  不同进给速度下切削SiCp/6005Al时,刀具前刀面的SEM图像及三维图像

    Figure  4.  SEM images and 3D images of tool rake face when cutting SiCp/6005Al at different feed rates

    图  5  不同工件转速下切削SiCp/6005Al时,刀具前刀面的SEM图像及三维图像

    Figure  5.  SEM images and 3D images of tool rake face when cutting SiCp/6005Al at different workpiece speeds

    图  6  积屑瘤

    Figure  6.  Built-up edge

    图  7  前刀面的SEM图像与EDS能谱分析图

    Figure  7.  SEM image and EDS energy spectrum analysis of rake face

    图  8  不同进给速度下切削SiCp/6005Al 432 s后的后刀面磨损形貌图像

    Figure  8.  Wear morphology image of flank after cutting SiCp/6005Al for 432 s at different feed rates

    图  9  不同转速下切削SiCp/6005Al 432 s后的后刀面磨损形貌图像

    Figure  9.  Wear morphology image of flank after cutting SiCp/6005Al for 432 s at different feed rates

    图  10  切削SiCp/6005Al 432 s时的后刀面磨损形貌SEM图

    Figure  10.  SEM of flank wear morphology after cutting SiCp/6005Al 432 s

    图  11  刀具磨损对切削力与切削温度的影响

    Figure  11.  Influence of tool wear on cutting force and cutting temperature

    图  12  刀具磨损对表面粗糙度的影响

    Figure  12.  Effect of tool wear on surface roughness

    图  13  表面形貌

    Figure  13.  Surface morphology

    图  14  磨损刀具的光整效果

    Figure  14.  Finishing effect of worn tools

    表  1  SiCp/6005Al的力学性能

    Table  1.   Mechanical properties of SiCp/6005Al

    材料属性数值
    密度 ρ / (g·cm−3)2.97
    弹性模量 E / GPa202
    抗弯强度 σb / MPa362
    热导率 k / (W·m−1·K−1)214
    扩散系数 α / (mm−2·s)94.3
    比热容 Cp / (J·g−1·K−1)0.848
    热膨胀系数 β / (10−6·℃−1)6.21
    下载: 导出CSV

    表  2  6005Al合金主要化学成分

    Table  2.   Main chemical constituents of 6005Al alloy

    元素 质量分数 ω / %
    0.3
    0.5
    0.4~0.7
    0.2
    余量
    下载: 导出CSV

    表  3  试验参数

    Table  3.   Experimental parameters

    切削参数数值
    转速 V / (r·min−1)500, 800, 1 100, 1 400
    进给速度 f / (mm·r−1)0.04, 0.06, 0.08, 0.10
    切削深度 ap / mm0.03
    下载: 导出CSV
  • [1] ZHAI C, XU J, LI Y, et al. The study on surface integrity on laser-assisted turning of SiCp/2024Al [J]. International Journal of Optomechatronics,2020,14(1):29-43. doi: 10.1080/15599612.2020.1789251
    [2] WEI C, GUO W, PRATOMO E S, et al. High speed, high power density laser-assisted machining of Al-SiC metal matrix composite with significant increase in productivity and surface quality [J]. Journal of Materials Processing Technology,2020,285:116784. doi: 10.1016/j.jmatprotec.2020.116784
    [3] ANDREWES C J E, FENG H Y, LAU W M. Machining of an aluminum/SiC composite using diamond inserts [J]. Journal of Materials Processing Technology,2000,102(1/2/3):25-29.
    [4] 王涛. 高体积分数SiCp/Al复合材料高速铣削基础研究 [D]. 北京: 北京理工大学, 2015.

    WANG Tao. Basic research on high speed milling of SiCp/Al composites with high volume fraction [D]. Beijing: Beijing Institute of Technology, 2015.
    [5] FAN Y, HAO Z, ZHENG M, et al. Wear characteristics of cemented carbide tool in dry-machining Ti-6Al-4V [J]. Machining Science and Technology,2016,20(2):249-261. doi: 10.1080/10910344.2016.1165837
    [6] PERSSON H, LENRICK F, FRANCA L, et al. Wear mechanisms of PcBN tools when machining AISI 316L [J]. Ceramics International,2021,47(22):31894-31906. doi: 10.1016/j.ceramint.2021.08.075
    [7] SARIKAYA M, GUPTA M K, TOMAZ I, et al. A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys [J]. CIRP Journal of Manufacturing Science and Technology,2021,35:624-658. doi: 10.1016/j.cirpj.2021.08.005
    [8] 孔宪俊. 45%SiCp/Al复合材料激光加热辅助车削性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    KONG Xianjun. Research on laser heating assisted turning performance of 45%SiCp/Al composites [D]. Harbin: Harbin Institute of Technology, 2017.
    [9] 徐丽娜. 加工SiCp/Al复合材料的金刚石刀具的研制及其磨损机理研究 [D]. 长春: 吉林大学, 2019.

    XU Lina. Development and wear mechanism of diamond tool for machining SiCp/Al composites [D]. Changchun: Jilin University, 2019.
    [10] 刘汉中. SiCp/2024Al复合材料的精密车削工艺与刀具磨损研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIU Hanzhong. Research on precision turning process and tool wear of SiCp/2024Al composites [D]. Harbin: Harbin Institute of Technology, 2017.
    [11] GUO J, ZHANG J G, PAN Y N, et al. A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals [J]. International Journal of Extreme Manufacturing,2020,2(1):1-4. doi: 10.1088/2631-7990/ab5d8f
    [12] ZHOU Y, GU Y, LIN J, et al. Feasibility study of single-crystal silicon ductile-regime turning via fast tool servo [J]. Journal of Materials Research and Technology,2022,16:1478-1493. doi: 10.1016/j.jmrt.2021.12.095
    [13] MUTHUKRISHNAN N, MURUGAN M, RAO K P. Machinability issues in turning of Al-SiC (10p) metal matrix composites [J]. The International Journal of Advanced Manufacturing Technology,2008,39(3):211-218.
    [14] 段春争, 冯占, 孙伟, 等. 不同铝基体SiCp/Al复合材料切削力与刀具的磨损研究 [J]. 工具技术,2018,52(1):40-44. doi: 10.3969/j.issn.1000-7008.2018.01.009

    DUAN Chunzheng, FENG Zhan, SUN Wei, et al. Research on cutting force and tool wear of SiCp/Al composites with different aluminum matrix [J]. Tool Engineering,2018,52(1):40-44. doi: 10.3969/j.issn.1000-7008.2018.01.009
    [15] BUSHLYA V, LENRICK F, GUTNICHENKO O, et al. Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite [J]. Wear,2017,376:152-164.
    [16] EL-GALLAB M, SKLAD M. Machining of Al/SiC particulate metal matrix composites part 3: comprehensive tool wear models [J]. Journal of Materials Processing Technology,2000,101(1/2/3):10-20.
    [17] DING X, LIEW W Y H, LIU X D. Evaluation of machining performance of MMC with PCBN and PCD tools [J]. Wear,2005,259(7/8/9/10/11/12):1225-1234.
    [18] DUAN C, SUN W, FU C, et al. Modeling and simulation of tool-chip interface friction in cutting Al/SiCp composites based on a three-phase friction model [J]. International Journal of Mechanical Sciences,2018,142:384-396.
    [19] 段春争, 车明帆, 孙伟, 等. 不同冷却润滑方式对切削SiCp/Al复合材料刀具磨损的影响 [J]. 复合材料学报,2019,36(5):1244-1253.

    DUAN Chunzheng, CHE Mingfan, SUN Wei, et al. Effect of different cooling and lubrication modes on tool wear of SiCp/Al composites [J]. Journal of Composite Materials,2019,36(5):1244-1253.
    [20] CHAMBERS A R. The machinability of light alloy MMCs [J]. Composites Part A: Applied Science and Manufacturing,1996,27(2):143-147. doi: 10.1016/1359-835X(95)00001-I
    [21] MANNA A, BHATTACHARAYYA B. A study on machinability of Al/SiC-MMC [J]. Journal of Materials Processing Technology,2003,140(1/2/3):711-716.
    [22] KONG X, WANG J, WANG M, et al. Mechanisms involved in the tool life improvement of laser assisted machining 45% SiCp/Al composites [J]. Optics & Laser Technology,2021,139:106919.
    [23] JI J, HUANG Y, LEE K M. Cutting tool temperature field reconstruction using hybrid macro/micro scale modeling for machining of titanium alloy [C]. Canada: IEEE, 2016.
    [24] ZHAO J, LIU Z, WANG B, et al. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions [J]. Mechanical Systems and Signal Processing,2021,150:107302. doi: 10.1016/j.ymssp.2020.107302
    [25] 左俊彦, 林有希, 何明. 基于粘着特性的刀具磨损机理研究 [J]. 表面技术,2019,48(7):364-370.

    ZUO Junyan, LIN Youxi, HE Ming. Based on adhesive characteristics of tool wear mechanism study [J]. Journal of Surface Technology,2019,48(7):364-370.
    [26] WANG Q, JIN Z, ZHAO Y, et al. A comparative study on tool life and wear of uncoated and coated cutting tools in turning of tungsten heavy alloys [J]. Wear,2021,482:203929.
    [27] RASHID R A R, PALANISAMY S, SUN S, et al. Tool wear mechanisms involved in crater formation on uncoated carbide tool when machining Ti6Al4V alloy [J]. The International Journal of Advanced Manufacturing Technology,2016,83(9/10/11/12):1457-1465.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  286
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2022-10-29
  • 录用日期:  2023-12-01
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回