CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流变弹性体制备及其在精密加工应用研究进展

龙浩天 路家斌 胡达 邓家云 付有志 阎秋生

龙浩天, 路家斌, 胡达, 邓家云, 付有志, 阎秋生. 磁流变弹性体制备及其在精密加工应用研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(2): 218-232. doi: 10.13394/j.cnki.jgszz.2022.0096
引用本文: 龙浩天, 路家斌, 胡达, 邓家云, 付有志, 阎秋生. 磁流变弹性体制备及其在精密加工应用研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(2): 218-232. doi: 10.13394/j.cnki.jgszz.2022.0096
LONG Haotian, LU Jiabin, HU Da, DENG Jiayun, FU Youzhi, YAN Qiusheng. Preparation of magnetorheological elastomers and their applications in precision machining: A review[J]. Diamond & Abrasives Engineering, 2023, 43(2): 218-232. doi: 10.13394/j.cnki.jgszz.2022.0096
Citation: LONG Haotian, LU Jiabin, HU Da, DENG Jiayun, FU Youzhi, YAN Qiusheng. Preparation of magnetorheological elastomers and their applications in precision machining: A review[J]. Diamond & Abrasives Engineering, 2023, 43(2): 218-232. doi: 10.13394/j.cnki.jgszz.2022.0096

磁流变弹性体制备及其在精密加工应用研究进展

doi: 10.13394/j.cnki.jgszz.2022.0096
基金项目: 广东省自然科学基金(2023A1515010923)
详细信息
    通讯作者:

    路家斌,男,1970 年生,博士、教授、博士研究生导 师。主要研究方向为超精密加工、精密分切加工。 E-mail:lujiabin@ gdut.edu.cn

  • 中图分类号: TG580.61 TQ330

Preparation of magnetorheological elastomers and their applications in precision machining: A review

  • 摘要: 磁流变弹性体(magnetorheological elastomer,MRE)是一种磁控智能材料,可通过调节外加磁场强度对其机械性能(如刚度、弹性模量、固有频率、阻尼能力等)进行连续、可逆的控制,在振动控制、机械工程、土木工程等领域得到了广泛的研究和应用。将MRE作为一种磨抛工具,利用磁场改变其刚度等性能来控制磨抛过程的机械去除,有望在精密加工领域得到广泛的应用。本文介绍了MRE的制备材料、制备方法和工艺,分析了外场(磁场和温度场)对MRE性能的影响规律,阐述了基于磁偶极子理论和宏观力学的本构模型,为MRE制备研究和实际工程应用提供指导,综述了MRE在精密加工领域的应用状况和未来发展方向。利用MRE的磁控性能变化可以较好地应用于精密加工,具有很好的发展前景。

     

  • 图  1  MRE不同分布形态

    Figure  1.  Different distribution patterns of MRE

    图  2  磁流变弹性体的工作模式

    Figure  2.  Operating mode of magnetorheological elastomers

    图  3  聚氨酯/环氧树脂基磁流变弹性体[16]

    Figure  3.  Polyurethane/epoxy-based magnetorheological elastomer[16]

    图  4  聚氨酯基MRE表面气孔分布示意图[21]

    Figure  4.  Schematic diagram of the pore distribution on the surface of polyurethane based MREs[21]

    图  5  人工塑模制备MRE流程示意图

    Figure  5.  Schematic diagram of the MRE preparation process by artificial molding

    图  6  3D打印技术制备MRE[52]

    Figure  6.  Preparation of MRE by 3D printing technology[52]

    图  7  MASM材料的制备过程[53]

    Figure  7.  Preparation process of MASM materials[53]

    图  8  在不同固化磁场强度下制备的 MRE 的磁控机械性能[57]

    Figure  8.  Magneto-controlled mechanical properties of MRE prepared at different curing magnetic field strengths [57]

    图  9  MRE的模量随温度和磁场的变化规律[58]

    Figure  9.  Variation pattern of modulus of MRE with temperature and magnetic field[58]

    图  10  MRE在不同振动频率以及磁场强度下的模量变化[59]

    Figure  10.  Modulus variation of MRE at different vibration frequencies as well as magnetic field strengths[59]

    图  11  磁偶极子相互作用图

    Figure  11.  Magnetic dipole interaction diagram

    图  12  MRE 中场强化效应的3种可能机制示意图[73]

    Figure  12.  schematic diagram of three possible mechanisms of field reinforcement effect in MRE[73]

    图  13  MRE的纤维强化结构[76]

    Figure  13.  Fiber-reinforced structure of MRE[76]

    图  14  磁流变弹性体砂轮及其表面微观形貌图[81]

    Figure  14.  Magnetorheological elastomeric grinding wheel and its surface micromorphology[81]

    图  15  H4169镍基高温合金抛光表面显微形貌[81]

    Figure  15.  Polished surface microstructure of H4169 nickel-based high temperature alloy[81]

    图  16  MRE抛光垫抛光SiC的表面三维形貌[85]

    Figure  16.  Three-dimensional morphology of the surface of MRE polishing pad polished SiC[85]

    图  17  MRE抛光垫材料去除模型[85]

    Figure  17.  MRE polishing pad material removal model[85]

    表  1  部分MRE基体及性能对比

    Table  1.   Comparison of some MRE substrates and properties

    基体类型性能参考文献
    硅橡胶600 mT磁场强度下获得了500%的磁流变效应[8]
    硅橡胶磁流变效应达到1672%[13]
    硅橡胶800 mT磁场强度下储能模量G$ ^\prime $从1增加到420 kPa,磁流变效应达41900%[14]
    硅橡胶剪切模量提高20%,压缩模量提高25%[26]
    聚氨酯、硅橡胶磁流变效应达到99.8%[27]
    聚氨酯磁流变效应达到100%[28]
    聚氨酯含CIPs的MRE拉伸应力增加758%[29]
    聚氨酯、环氧树脂形成IPN结构,磁流变效应达691%[15]
    聚氨酯海绵骨架磁流变效应达到820%[18,30]
    聚氨酯、环氧树脂形成IPN结构,磁流变效应为200%[16]
    天然橡胶磁流变效应达到67%[22]
    天然橡胶磁流变效应为34.85%[31]
    天然橡胶磁流变效应为392%,损耗因子为0.14[32]
    天然橡胶通过磁性颗粒包覆制备出更高的MRE储能模量和损耗模量[33]
    聚二甲基硅氧烷弹性模量为55.7 kPa的MRE对应的磁流变效应高达17286%[34]
    聚二甲基硅氧烷磁流变效应为55%[35]
    丁苯橡胶、丁腈橡胶
    以及丙烯腈
    磁流变效应达到50%[23-24]
    下载: 导出CSV
  • [1] JAAFAR M F, MUSTAPHA F, MUSTAPHA M. Review of current research progress related to magnetorheological elastomer material [J]. Journal of Materials Research and Technology,2021,15:5010-5045. doi: 10.1016/j.jmrt.2021.10.058
    [2] BASTOLA A K, PAUDEL M, Li L, et al. Recent progress of magnetorheological elastomers: A review [J]. Smart Materials and Structures,2020,29(12):123002. doi: 10.1088/1361-665X/abbc77
    [3] KHANOUKI M A, SEDAGHATI R, HEMMATIAN M. Multidisciplinary design optimization of a novel sandwich beam-based adaptive tuned vibration absorber featuring magnetorheological elastomer [J]. Materials,2020,13(10):2261. doi: 10.3390/ma13102261
    [4] GU X, YU Y, LI Y, et al. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control [J]. Mechanical Systems and Signal Processing,2019,119:380-398. doi: 10.1016/j.ymssp.2018.10.001
    [5] ALKHALAF A, HOOSHIAR A, DARGAHI J. Composite magnetorheological elastomers for tactile displays: Enhanced MR-effect through bi-layer composition [J]. Composites Part B: Engineering,2020,190:107888. doi: 10.1016/j.compositesb.2020.107888
    [6] SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels [J]. Journal of Applied Polymer Science,1995,4(58):787-792.
    [7] DO X P, CHOI S B. A state-of-the-art on smart materials actuators over the last decade: Control aspects for diverse applications [J]. Smart Materials and Structures,2022,31(5):53001. doi: 10.1088/1361-665X/ac5b1e
    [8] 李剑锋, 龚兴龙, 张先舟, 等. 硅橡胶基磁流变弹性体的研制 [J]. 功能材料,2006,37(6):1003-1005,1012. doi: 10.3321/j.issn:1001-9731.2006.06.046

    LI Jianfeng, GONG Xinglong, ZHANG Xianzhou, et al. Research on magnetorheological elastomer based on silicone rubber [J]. Journal of Functional Materials,2006,37(6):1003-1005,1012. doi: 10.3321/j.issn:1001-9731.2006.06.046
    [9] YOON J H, LEE S W, BAE S H, et al. Effect of alignment of magnetic particles on the rheological properties of natural rubber composite [J]. Journal of Polymer Research,2021,28(10):1-7.
    [10] ENTEZAM M, ZAREI I, KHONAKDAR H A. Effect of accelerator solubility on the curing characteristics and physico-mechanical properties of SBR/NBR blends: Correlation with feeding sequence and blend composition [J]. Polymer Bulletin,2022,79:1501-1519.
    [11] CHEN K, REN Q, LI J, et al. A highly stretchable and self-healing hydroxy-terminated polybutadiene elastomer [J]. Journal of Saudi Chemical Society,2020,24(12):1034-1041. doi: 10.1016/j.jscs.2020.11.002
    [12] XIE A, MAO S W, CHEN T J, et al. Microstructure and properties of cerium oxide/polyurethane elastomer composites [J]. Rare Metals,2021,40:3685-3693. doi: 10.1007/s12598-021-01714-3
    [13] DARGAHI A, SEDAGHATI R, RAKHEJA S. On the properties of magnetorheological elastomers in shear mode: Design, fabrication and characterization [J]. Composites Part B: Engineering,2019,159:269-283. doi: 10.1016/j.compositesb.2018.09.080
    [14] CHERTOVICH A V, STEPANOV G V, KRAMARENKO E Y, et al. New composite elastomers with giant magnetic response [J]. Macromolecular Materials and Engineering,2010,295(4):336-341. doi: 10.1002/mame.200900301
    [15] 游仕平, 曾德长, 游世辉, 等. 硅橡胶基尼龙帘线增强型磁敏橡胶的研究 [J]. 弹性体,2011,21(1):1-5. doi: 10.3969/j.issn.1005-3174.2011.01.001

    YOU Shiping, ZENG Dechang, YOU Shihui, et al. Study on the nylon cord reinforced magnetorheological rubber based on the silicone rubber [J]. China Elastomerics,2011,21(1):1-5. doi: 10.3969/j.issn.1005-3174.2011.01.001
    [16] QI S, YU M, FU J, et al. Stress relaxation behavior of magnetorheological elastomer: Experimental and modeling study [J]. Journal of Intelligent Material Systems and Structures,2017,29:205-213.
    [17] YU M, QI S, FU J, et al. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology [J]. Applied Physics Letters,2015,107(11):111901. doi: 10.1063/1.4931127
    [18] GE L, GONG X, WANG Y, et al. The conductive three dimensional topological structure enhanced magnetorheological elastomer towards a strain sensor [J]. Composites Science and Technology,2016,135:92-99. doi: 10.1016/j.compscitech.2016.09.015
    [19] JU B X, YU M, FU J, et al. A novel porous magnetorheological elastomer: Preparation and evaluation [J]. Smart Materials and Structures,2012,21(3):35001. doi: 10.1088/0964-1726/21/3/035001
    [20] JU B, TANG R, ZHANG D, et al. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field [J]. Journal of Magnetism and Magnetic Materials,2015,374:283-288. doi: 10.1016/j.jmmm.2014.08.012
    [21] JU B X, YU M, FU J, et al. Study on the properties of porous magnetorheological elastomers under shock effect [J]. Journal of Physics: Conference Series,2013,412:12039.
    [22] TAO Y, RUI X, YANG F, et al. Design and experimental research of a magnetorheological elastomer isolator working in squeeze/elongation-shear mode [J]. Journal of Intelligent Material Systems and Structures,2018,29(7):1418-1429. doi: 10.1177/1045389X17740436
    [23] LOKANDER M, STENBERG B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(6):677-680. doi: 10.1016/S0142-9418(02)00175-7
    [24] LOKANDER M, STENBERG B. Performance of isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(3):245-251. doi: 10.1016/S0142-9418(02)00043-0
    [25] YUNUS N A, MAZLAN S A, Ubaidillah, et al. Thermal stability and rheological properties of epoxidized natural rubber-based magnetorheological elastomer [J]. International Journal of Molecular Sciences,2019,20(3):746. doi: 10.3390/ijms20030746
    [26] LENG D, WU T, LIU G, et al. Tunable isolator based on magnetorheological elastomer in coupling shear–squeeze mixed mode [J]. Journal of Intelligent Material Systems and Structures,2018,29(10):2236-2248. doi: 10.1177/1045389X18758205
    [27] BICA I, ANITAS E M, AVERIS L M E. Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field [J]. Journal of Industrial and Engineering Chemistry,2015,28:86-90. doi: 10.1016/j.jiec.2015.02.003
    [28] KOZLOWSKA J, BOCZKOWSKA A, CZULAK A, et al. Novel MRE/CFRP sandwich structures for adaptive vibration control [J]. Smart Materials and Structures,2016,25(3):35025. doi: 10.1088/0964-1726/25/3/035025
    [29] ELÍAS-ZÚñIGA A, PALACIOS-PINEDA L M, PERALES-MARTÍNEZ I A, et al. Investigating the mullins effect and energy dissipation in magnetorheological polyurethane elastomers [J]. International Journal of Molecular Sciences,2020,21(15):5318. doi: 10.3390/ijms21155318
    [30] 葛琳. 三维网状结构增强磁流变弹性体的研究 [D]. 合肥: 中国科学技术大学, 2016.

    GE Lin. Study on three dimensional structure enchanced magnetorheological elastomer [D]. Hefei: University of Science and Technology of China, 2016.
    [31] SHI G, WANG W, LU H, et al. Study of crosslink structure and dynamic mechanical properties of magnetorheological elastomer: Effect of vulcanization system [J]. Journal of Intelligent Material Systems and Structures,2019,30(8):1189-1199. doi: 10.1177/1045389X19835940
    [32] 陈琳. 磁流变弹性体的研制及其力学行为的表征[D]. 合肥: 中国科学技术大学, 2009.

    CHEN Lin. The development and mechanical characterization of magnetorheological elastomers [D]. Hefei: University of Science and Technology of China, 2009.
    [33] AN J S, KWON S H, CHOI H J, et al. Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance [J]. Composite Structures,2017,160:1020-1026. doi: 10.1016/j.compstruct.2016.10.128
    [34] YAO J, SUN Y, WANG Y, et al. Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix [J]. Composites Science and Technology,2018,162:170-179. doi: 10.1016/j.compscitech.2018.04.036
    [35] WINGER J, SCHÜMANN M, KUPKA A, et al. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers [J]. Journal of Magnetism and Magnetic Materials,2019,481:176-182. doi: 10.1016/j.jmmm.2019.03.027
    [36] MITSUMATA T, FURUKAWA K, JULIAC E, et al. Compressive modulus of ferrite containing polymer gels [J]. International Journal of Modern Physics B,2002,16(17/18):2419-2425.
    [37] MASUD M, BREZNAK C, LOCKETTE P, et al. On the electric and magnetic alignment of magnetoactive barium hexaferrite-PDMS composites [J]. International Society for Optics and Photonics,2017,10165:1016513.
    [38] KRAMARENKO E Y, CHERTOVICH A V, STEPANOV G V, et al. Magnetic and viscoelastic response of elastomers with hard magnetic filler [J]. Smart Materials and Structures,2015,24(3):35002. doi: 10.1088/0964-1726/24/3/035002
    [39] PADALKA O, SONG H J, WERELEY N M, et al. Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites [J]. IEEE Transactions on Magnetics,2010,46(6):2275-2277. doi: 10.1109/TMAG.2010.2044759
    [40] HAPIPI N, AZIZ S A A, MAZLAN S A, et al. The field-dependent rheological properties of plate-like carbonyl iron particle-based magnetorheological elastomers [J]. Results in Physics,2019,12:2146-2154. doi: 10.1016/j.rinp.2019.02.045
    [41] JOLLY M R, CARLSON J D, MUñOZ B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems and Structures,1996,7(6):613-622. doi: 10.1177/1045389X9600700601
    [42] XU Y, GONG X, XUAN S, et al. A high-performance magnetorheological material: Preparation, characterization and magnetic-mechanic coupling properties [J]. Soft Matter,2011,7(11):5246. doi: 10.1039/c1sm05301a
    [43] CHEN D, YU M, ZHU M, et al. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application [J]. Smart Materials and Structures,2016,25(11):115005. doi: 10.1088/0964-1726/25/11/115005
    [44] CHOI S, CHUNG K, KWON S, et al. Effect of surface treated magneto-responsible particle on the property of magneto-rheological elastomer based on silicone rubber [J]. Elastomers and Composites,2016,51(2):113-121. doi: 10.7473/EC.2016.51.2.113
    [45] LI J, GONG X, ZHU H, et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers [J]. Polymer Testing,2009,28(3):331-337. doi: 10.1016/j.polymertesting.2009.01.008
    [46] YU M, QI S, FU J, et al. Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix [J]. Composites Science and Technology,2017,139:36-46. doi: 10.1016/j.compscitech.2016.12.010
    [47] KHAIRI M H A, FATAH A Y A, MAZLAN S A, et al. Enhancement of particle alignment using silicone oil plasticizer and its effects on the field-dependent properties of magnetorheological elastomers [J]. International Journal of Molecular Sciences,2019,20(17):4085. doi: 10.3390/ijms20174085
    [48] LI Y, LI J, LI W, et al. A state-of-the-art review on magnetorheological elastomer devices [J]. Smart Materials and Structures,2014,23(12):123001. doi: 10.1088/0964-1726/23/12/123001
    [49] CHEN L, GONG X L, LI W H. Effect of carbon black on the mechanical performances of magnetorheological elastomers [J]. Polymer Testing,2008,27(3):340-345. doi: 10.1016/j.polymertesting.2007.12.003
    [50] RAJHAN N H, HAMID H A, AZMI I, et al. Experimental study on mechanical properties of magnetorheological elastomer [J]. Journal Teknologi,2016,78:33-37.
    [51] 汪建晓, 孟光. 磁流变弹性体研究进展 [J]. 功能材料,2006,37(5):706-709. doi: 10.3321/j.issn:1001-9731.2006.05.009

    WANG Jianxiao, MENG Guang. Research progress In magnetorheological elastomers [J]. Journal of Functional Materials,2006,37(5):706-709. doi: 10.3321/j.issn:1001-9731.2006.05.009
    [52] BASTOLA A K, HOANG V T, LI L. A novel hybrid magnetorheological elastomer developed by 3D printing [J]. Materials & Design,2017,114:391-397.
    [53] QI S, GUO H, FU J, et al. 3D printed shape-programmable magneto-active soft matter for biomimetic applications [J]. Composites Science and Technology,2020,188:107973. doi: 10.1016/j.compscitech.2019.107973
    [54] KANIA A, BERENT K, MAZUR T, et al. 3D printed composites with uniform distribution of Fe3O4 nanoparticles and magnetic shape anisotropy [J]. Additive Manufacturing,2021,46:102149. doi: 10.1016/j.addma.2021.102149
    [55] WOODS B K S, WERELEY N, HOFFMASTER R, et al. Manufacture of bulk magnetorheological elastomers using vacuum assisted resin transfer molding [J]. International Journal of Modern Physics B,2007,21(28/29):5010-5017.
    [56] GAO T, XIE R, CHUNG K. Microstructure and dynamic mechanical properties of magnetorheological elastomer based on ethylene/acrylic elastomer prepared using different manufacturing methods [J]. Micro & Nano Letters,2018,13(7):1026-1030.
    [57] 胡达. 单晶SiC磁流变弹性抛光垫制备及其抛光特性研究 [D]. 广州: 广东工业大学, 2022.

    HU Da. Preparation and Polishing Characteristics of Magnetorheological Elastic Polishing Pad for Single-crystal [D]. Guangzhou: Guangdong University of Technology, 2022.
    [58] WEN Q, SHEN L, LI J, et al. Temperature dependent magneto-mechanical properties of magnetorheological elastomers [J]. Journal of Magnetism and Magnetic Materials,2020,497:165998. doi: 10.1016/j.jmmm.2019.165998
    [59] BERASATEGI J, SALAZAR D, GOMEZ A, et al. Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers [J]. Rheologica Acta,2020,59(7):469-476. doi: 10.1007/s00397-020-01218-4
    [60] ROSENSWEIG R E. Directions in ferrohydrodynamics (invited) [J]. Journal of Applied Physics. 1985, 57(8): 4259-4264.
    [61] JOLLY M R, CARLSON J D, MUñOZ B C. A model of the behaviour of magnetorheological materials [J]. Smart Materials and Structures,1996,5(5):607-614. doi: 10.1088/0964-1726/5/5/009
    [62] LANOTTE L, AUSANIO G, HISON C, et al. Particle dimension effects on magnetization and strain sensitivity for a composite of nickel particles in silicone matrix [J]. Journal of Magnetism and Magnetic Materials, 2004, 272–276, Part 2: 1533-1535.
    [63] LANOTTE L, AUSANIO G, IANNOTTI V, et al. Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix [J]. Applied Physics A:Materials Science & Processing,2003,77(7):953-958.
    [64] LANOTTE L, AUSANIO G, HISON C, et al. The potentiality of composite elastic magnets as novel materials for sensors and actuators [J]. Sensors and Actuators A-Physical,2003,106(1–3):56-60.
    [65] YIN H M, SUN L Z. Magnetoelasticity of chain-structured ferromagnetic composites [J]. Applied Physics Letters,2005,86(26):261901. doi: 10.1063/1.1954895
    [66] YIN H M, SUN L Z. Magnetoelastic modelling of composites containing randomly dispersed ferromagnetic particles [J]. Philosophical Magazine,2006,86(28):4367-4395. doi: 10.1080/14786430600724421
    [67] COQUELLE E, BOSSIS G, SZABO D, et al. Micromechanical analysis of an elastomer filled with particles organized in chain-like structure [J]. Journal of Materials Science,2006,41(18):5941-5953. doi: 10.1007/s10853-006-0329-8
    [68] STEPANOV G V, BORIN D Y, RAIKHER Y L, et al. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers [J]. Journal of Physics: Condensed Matter,2008,20(20):204121. doi: 10.1088/0953-8984/20/20/204121
    [69] KALETA J, KRÓLEWICZ M, LEWANDOWSKI D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices [J]. Smart Materials and Structures,2011,20(8):85006. doi: 10.1088/0964-1726/20/8/085006
    [70] BILLER A M, STOLBOV O V, RAIKHER Y L. Modeling of particle interactions in magnetorheological elastomers [J]. Journal of Applied Physics,2014,116(11):114904. doi: 10.1063/1.4895980
    [71] SHEN Y, GOLNARAGHI M F, HEPPLER G R. Experimental research and modeling of magnetorheological elastomers [J]. Journal of Intelligent Material Systems and Structures,2004,15(1):27-35. doi: 10.1177/1045389X04039264
    [72] DANAS K, KANKANALA S V, TRIANTAFYLLIDIS N. Experiments and modeling of iron-particle-filled magnetorheological elastomers [J]. Journal of the Mechanics and Physics of Solids,2012,60(1):120-138. doi: 10.1016/j.jmps.2011.09.006
    [73] HAN Y, HONG W, FAIDLEY L E. Field-stiffening effect of magneto-rheological elastomers [J]. International Journal of Solids and Structures,2013,50(14–15):2281-2288.
    [74] ZHU Y, GONG X, DANG H, et al. Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model [J]. Chinese Journal of Chemical Physics,2006,19(2):126-130. doi: 10.1360/cjcp2006.19(2).126.5
    [75] 王奇, 董旭峰, 李芦钰, 等. 磁流变弹性体松弛行为的本构描述 [J]. 复合材料学报,2013,30(s1):138-141. doi: 10.13801/j.cnki.fhclxb.2013.s1.037

    WANG Qi, DONG Xufeng, LI Luyu, et al. Constitutive description for relaxation behavior of magnetorheological elastomer [J]. Journal of Composites,2013,30(s1):138-141. doi: 10.13801/j.cnki.fhclxb.2013.s1.037
    [76] CHEN S W, LI R, ZHANG Z, et al. Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer [J]. Smart Materials and Structures,2016,25(3):35001. doi: 10.1088/0964-1726/25/3/035001
    [77] 朱俊涛, 徐赵东. 基于分数阶导数的磁流变弹性体参数模型 [J]. 工程力学,2012,29(8):45-49+79. doi: 10.6052/j.issn.1000-4750.2010.10.0779

    ZHU Juntao, XU Zhaodong. The parameter model of magnetorheological elastomers based on fractional derivatives [J]. Engineering Mechanics,2012,29(8):45-49+79. doi: 10.6052/j.issn.1000-4750.2010.10.0779
    [78] GUO F, DU C, LI R. Viscoelastic parameter model of magnetorheological elastomers based on abel dashpot [J]. Advances in Mechanical Engineering,2014,6:629386. doi: 10.1155/2014/629386
    [79] WANG J, WAN Y, SHI C, et al. Rigidity controllable polishing tool based on magnetorheological effect [C]. Bellingham: Proceedings of SPIE - The International Society for Optical Engineering, 2012.
    [80] 徐志强, 易理银, 张高峰, 等. 磁流变弹性体砂轮抛光镍基高温合金GH4169表面完整性研究 [J]. 宇航材料工艺,2020,50(5):51-57.

    XU Zhiqiang, YI Liyin, ZHANG Gaofeng, et al. Surface integrity of polishing nickel-based superalloys with magnetorheological elastomer grinding wheel [J]. Aerospace Materials Process,2020,50(5):51-57.
    [81] 易理银. 镍基高温合金磨削及其磁流变弹性体抛光试验研究 [D]. 湘潭: 湘潭大学, 2020.

    YI Liyin. Experimental study on grinding of nickel-based superalloy and polishing of magnetorheological elastomer [D]. Xiangtan: Xiangtan University, 2020.
    [82] XU Z, WANG J, WU H, et al. Effect of abrasive particles on mechanical properties of magnetorheological elastomer [J]. Polymers for Advanced Technologies,2021,32(2):630-640. doi: 10.1002/pat.5116
    [83] XU Z, WANG Q, ZHU K, et al. Preparation and characterization of magnetorheological elastic polishing composites [J]. Journal of Intelligent Material Systems and Structures,2019,30(10):1481-1492. doi: 10.1177/1045389X19835960
    [84] CHEN Y, HUANG W, ZHANG Y, et al. Novel high efficiency deterministic polishing method using magnetorheological elastomer [J]. Smart Materials and Structures,2020,29(11):114008. doi: 10.1088/1361-665X/abb989
    [85] HU D, DENG J, LU J, et al. A study of the magneto-controlled mechanical properties and polishing performance for single-crystal SiC used as a magnetorheological-elastomer polishing pad [J]. Smart Materials and Structures,2022,31(3):35021. doi: 10.1088/1361-665X/ac4db6
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  912
  • HTML全文浏览量:  231
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-07-26
  • 录用日期:  2022-08-01
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回