CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析

王志成 李文辉 李秀红 张演 温学杰

王志成, 李文辉, 李秀红, 张演, 温学杰. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析[J]. 金刚石与磨料磨具工程, 2022, 42(5): 617-625. doi: 10.13394/j.cnki.jgszz.2022.0051
引用本文: 王志成, 李文辉, 李秀红, 张演, 温学杰. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析[J]. 金刚石与磨料磨具工程, 2022, 42(5): 617-625. doi: 10.13394/j.cnki.jgszz.2022.0051
WANG Zhicheng, LI Wenhui, LI Xiuhong, ZHANG Yan, WEN Xuejie. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk[J]. Diamond & Abrasives Engineering, 2022, 42(5): 617-625. doi: 10.13394/j.cnki.jgszz.2022.0051
Citation: WANG Zhicheng, LI Wenhui, LI Xiuhong, ZHANG Yan, WEN Xuejie. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk[J]. Diamond & Abrasives Engineering, 2022, 42(5): 617-625. doi: 10.13394/j.cnki.jgszz.2022.0051

整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析

doi: 10.13394/j.cnki.jgszz.2022.0051
基金项目: 国家自然科学基金(51875389,51975399);航空发动机高性能制造工信部重点实验室开放课题(HPM-2020-07)。
详细信息
    通讯作者:

    李文辉,男,1975年生,教授、博士生导师。主要研究方向:精密零件表面光整加工。E-mail: wenhui_li7190@126.com

  • 中图分类号: TG58; TH161

Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk

  • 摘要: 针对目前抛磨整体叶盘存在的加工效率低、均匀一致性差等加工难题,采用回转辅助水平振动式滚磨光整加工工艺对整体叶盘进行抛磨加工。基于离散元法模拟加工过程中颗粒的作用行为,探究颗粒对整体叶盘的作用行为特征、作用力变化规律、作用力分布特征。结果表明:颗粒在整体叶盘流道区域与两侧无工件区域具有不同的运动特征,两侧颗粒仅能作用于整体叶盘的两侧区域;整体叶盘回转过程中,叶片在进出流场区域时会受到一些突变力的作用,沿回转方向叶片表面受力呈先增大后减小趋势,而且改变回转方向影响颗粒对叶背、叶盆的作用力波动幅度;颗粒对叶片表面的作用力存在明显的强弱差异,作用力RSD值在30%~60%,叶背强作用力主要集中于进气及叶尖区域,叶盆强作用力主要集中于排气及叶尖区域。

     

  • 图  1  回转辅助水平振动式抛磨整体叶盘原理图

    Figure  1.  Schematic diagram of rotary assisted horizontal vibration mass polishing blisk

    图  2  整体叶盘模型

    Figure  2.  Blisk model

    图  3  数据块分布示意图

    Figure  3.  Distribution diagram of data blocks

    图  4  颗粒流场区域示意图

    Figure  4.  Schematic diagram of particle flow field area

    图  5  颗粒流场行为示意图

    Figure  5.  Schematic diagram of particle flow field behavior

    图  6  叶片位置示意图

    Figure  6.  Schematic diagram of blade position

    图  7  逆时针回转时不同位置叶片表面法向作用力波动图

    Figure  7.  Fluctuation diagram of normal force on blade surface at different positions during counterclockwise rotation

    图  8  顺时针回转时不同位置叶片表面法向作用力波动图

    Figure  8.  Fluctuation of normal force on blade surface at different positions in clockwise rotation

    图  9  不同位置叶片表面平均法向作用力变化图

    Figure  9.  Changes of average normal force on blade surface at different positions

    图  10  逆时针回转时不同位置叶片表面法向作用力分布云图

    Figure  10.  Cloud diagram of normal force distribution on blade surface at different positions during counterclockwise rotation

    图  11  逆时针回转时不同位置叶片表面法向作用力RSD值变化规律

    Figure  11.  Variation rule of RSD value of normal force on blade surface at different positions during counterclockwise rotation

    图  12  顺时针回转时不同位置叶片表面法向作用力分布云图

    Figure  12.  Cloud diagram of normal force distribution on blade surface at different positions during clockwise rotation

    图  13  顺时针回转时不同位置叶片表面法向作用力RSD值变化规律

    Figure  13.  Variation rule of RSD value of normal force on blade surface at different positions during clockwise rotation

    图  14  逆时针转动时叶片表面受力分布云图

    Figure  14.  Cloud diagram of force distribution on blade surface when rotating counter clockwise

    图  15  顺时针转动时叶片表面受力分布云图

    Figure  15.  Cloud diagram of force distribution on blade surface in clockwise rotation

    表  1  模型材料参数[21]

    Table  1.   Material parameters of the model[21]

    类型材料泊松比 υ剪切模量 G / Pa密度 ρ / (kg·m−3)
    颗粒棕刚玉0.211.24×10112675
    滚筒尼龙0.283.20×1091150
    整体叶盘钛合金0.334.50×10104500
    下载: 导出CSV

    表  2  接触参数[21]

    Table  2.   Contact parameters[21]

    类型碰撞恢复系数 e静摩擦系数 μ1滚动摩擦系数 μ2
    颗粒 / 颗粒0.750.300.03
    颗粒 / 滚筒0.360.260.15
    颗粒 / 整体叶盘0.500.360.05
    下载: 导出CSV
  • [1] 杨胜强, 李文辉, 李秀红, 等. 高性能零件滚磨光整加工研究进展 [J]. 表面技术,2019,48(10):13-24.

    YANG Shengqiang, LI Wenhui, LI Xiuhong, et al. Research development of mass finishing for high-performance parts [J]. Surface Technology,2019,48(10):13-24.
    [2] 杨万辉, 朱静宇, 陈雷, 等. 整体叶盘疲劳失效分析与抗疲劳强化技术应用 [J]. 金属加工(冷加工),2019(9):43-46.

    YANG Wanhui, ZHU Jingyu, CHEN Lei, et al. Fatigue failure analysis of integral blisk and application of anti-fatigue strengthening technique [J]. Metal Working (Metal Cutting),2019(9):43-46.
    [3] 黄春峰. 航空发动机整体叶盘结构及发展趋势 [J]. 现代零部件,2005(4):96-98, 100-101.

    HUANG Chunfeng. Structure and development trend of aero-engine blisk [J]. Modern Components,2005(4):96-98, 100-101.
    [4] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势 [J]. 航空学报,2016,37(7):2045-2064.

    HUANG Yun, XIAO Guijian, ZOU Lai. Research status and development trend of blisk polishing technology [J]. Journal of Aeronautics,2016,37(7):2045-2064.
    [5] 杨万辉, 徐新发, 杨金发. 整体叶盘先进制造技术应用与发展 [J]. 世界制造技术与装备市场,2019(2):69-72.

    YANG Wanhui, XU Xinfa, YANG Jinfa. Application and development of advanced manufacturing technology for integral blisk [J]. World Market for Manufacturing Technology and Equipment,2019(2):69-72.
    [6] 肖贵坚. 整体叶盘型面开式砂带精密磨削方法及其实验研究 [D]. 重庆: 重庆大学, 2016.

    XIAO Guijian. Experimental research on the precision grinding method of blisk with open-loop abrasive belt [D]. Chongqing: Chongqing University, 2016.
    [7] WANG Y M, YANG J X, LI D W, et al. Tool path generation with global interference avoidance or the robotic polishing of blisks [J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(3/4): 1223-1232.
    [8] FU Y Z, GAO H, WANG X P, et al. Blade surface uniformity of blisk finished by abrasive flow machining [J]. The International Journal of Advanced Manufacturing Technology,2016,84(5/8):1725-1735.
    [9] 杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术 [M]. 北京: 国防工业出版社, 2011.

    YANG Shengqiang, LI Wenhui, CHEN Hongling, et al. Surface finishing theory and new technology [M]. Beijing: National Defense Industry Press, 2011.
    [10] 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展 [J]. 力学进展,2003,33(2):251-260. doi: 10.3321/j.issn:1000-0992.2003.02.010

    XU Yong, SUN Qicheng, ZHANG Ling, et al. Advances in particle discrete element method [J]. Advances in Mechanics,2003,33(2):251-260. doi: 10.3321/j.issn:1000-0992.2003.02.010
    [11] HASHEMNIA K, POURANDI S. Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method [J]. Powder Technology,2018,327:335-345. doi: 10.1016/j.powtec.2017.12.097
    [12] LI W H, ZHANG L, LI X H, et al. Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: Kinematics mechanism and distribution characteristics [J]. Powder Technology,2017,318:518-527. doi: 10.1016/j.powtec.2017.06.033
    [13] HAO Y P, YANG S Q, LI X H, et al. Analysis of contact force characteristics of vibratory finishing within pipe-cavity [J]. Granular Matter, 2021, 23(2).
    [14] NAEINI S E, SPELT J K. Development of single-cell bulk circulation in granular media in a vibrating bed [J]. Powder Technology,2011,211(1):176-186. doi: 10.1016/j.powtec.2011.04.018
    [15] LI X H, LI W H, YANG S Q, et al. Study on polyurethane media for mass finishing process: Dynamic characteristics and performance [J]. International Journal of Mechanical Science,2018,138:250-261.
    [16] DA SILVA MACIEL L, SPELT J K. Influence of process parameters on average particle speeds in a vibratory finisher [J]. Granular Matter,2018,20(4):1-11.
    [17] DA SILVA MACIEL L, SPELT J K. Comparison of DEM predictions and measured wall-media contact forces and work in a vibratory finisher [J]. Powder Technology 2020, 366: 434–447.
    [18] 郭鹏辉, 李文辉, 李秀红, 等. 一维振动式滚磨光整加工颗粒流场的离散元模拟分析 [J]. 机械科学与技术,2021,40(7):1037-1042.

    GUO Penghui, LI Wenhui, LI Xiuhong, et al. Discrete element simulation analysis of particle flow field in one-dimensional vibration rolling finishing process [J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(7):1037-1042.
    [19] 李鹏, 李文辉, 李秀红, 等. 航空发动机整体叶盘回转式滚磨光整加工数值模拟与分析 [J]. 机械科学与技术,2021,40(4):633-640.

    LI Peng, LI Wenhui, LI Xiuhong, et al. Numerical simulation and analysis of rotary-typed mass finishing for aeroengine blisk [J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(4):633-640.
    [20] 苏文飞. 整体叶盘大尺寸扭曲通道电解预加工试验研究 [D]. 南京: 南京航空航天大学, 2017.

    SU Wenfei. Experimental investigation of electrochemical machining for large size twisted blisk cascade passage [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
    [21] 张荔, 李文辉, 杨胜强. 滚磨光整加工中磨料颗粒堆积角的离散元参数标定 [J]. 中国科技论文,2016,11(16):1821-1825. doi: 10.3969/j.issn.2095-2783.2016.16.006

    ZHANG Li, LI Wenhui, YANG Shengqiang. Discrete element parameter calibration of abrasive particle stacking angle in barrel finishing [J]. Chinese Scientific Papers,2016,11(16):1821-1825. doi: 10.3969/j.issn.2095-2783.2016.16.006
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  121
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-04-18
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回