CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石磨粒工具增材制造技术现状及展望

王建宇 黄国钦

王建宇, 黄国钦. 金刚石磨粒工具增材制造技术现状及展望[J]. 金刚石与磨料磨具工程, 2022, 42(3): 307-316. doi: 10.13394/j.cnki.jgszz.2022.0007
引用本文: 王建宇, 黄国钦. 金刚石磨粒工具增材制造技术现状及展望[J]. 金刚石与磨料磨具工程, 2022, 42(3): 307-316. doi: 10.13394/j.cnki.jgszz.2022.0007
WANG Jianyu, HUANG Guoqin. Review on manufacturing diamond abrasive tools by additive manufacturing technology[J]. Diamond &Abrasives Engineering, 2022, 42(3): 307-316. doi: 10.13394/j.cnki.jgszz.2022.0007
Citation: WANG Jianyu, HUANG Guoqin. Review on manufacturing diamond abrasive tools by additive manufacturing technology[J]. Diamond &Abrasives Engineering, 2022, 42(3): 307-316. doi: 10.13394/j.cnki.jgszz.2022.0007

金刚石磨粒工具增材制造技术现状及展望

doi: 10.13394/j.cnki.jgszz.2022.0007
基金项目: 国家重点研发计划课题(2021YFB3701803);国家自然科学基金(51975221)。
详细信息
    通讯作者:

    黄国钦,男,1981年生,博士、教授、博士生导师。主要研究方向:超硬磨料工具、高效精密加工、智能制造与装备。E-mail: smarthgq@hqu.edu.cn

  • 中图分类号: TG74;TG66

Review on manufacturing diamond abrasive tools by additive manufacturing technology

  • 摘要: 金刚石磨粒工具是工程陶瓷、玻璃、半导体等硬脆材料高效精密加工的重要手段。日益提升的零件制造质量、成型要求和加工效率给金刚石磨粒工具带来了巨大挑战,工具结构改进已成为应对这一挑战的关键,但却给工具制造带来了难题。近年来,增材制造技术因其优异的复杂结构成型能力而备受关注。采用增材制造技术进行金刚石磨粒工具制备也已被业界视为解决复杂结构磨具高效成型的潜在手段并成为研究热点。立足于目前已有的相关研究报道,以光固化成型技术(SLA)、选择性激光烧结技术(SLS)、激光选区熔化技术(SLM)为主,总结现有增材制造技术在金刚石磨粒工具制备方面的研究进展,分析其在制造工艺上的不同特点,并对未来利用该类技术制备金刚石磨粒工具进行展望与建议。

     

  • 图  1  复杂结构金刚石磨粒工具[3-5]

    Figure  1.  Complex structure diamond abrasive tool[3-5]

    图  2  技术流程图

    Figure  2.  Technical flow chart

    图  3  SLA打印原理图

    Figure  3.  SLA printing schematic

    图  4  SLS打印原理图

    Figure  4.  SLS printing schematic

    图  5  SLM打印原理图

    Figure  5.  SLM printing schematic

    图  6  紫外光固化树脂黏结剂磨具固化工艺[37-38]

    Figure  6.  UV curing resin bond abrasive tool curing process[37-38]

    图  7  具有3D可控磨料排布的砂轮[39-40]

    Figure  7.  Grinding wheel with 3D controllable abrasive arrangement[39-40]

    图  8  磨粒分布规则的金刚石磨粒工具制造工艺[42]

    Figure  8.  Manufacturing process diagram of diamond abrasive tool with regular abrasive particle distribution[42]

    图  9  金刚石砂轮局部形态图[42]

    Figure  9.  Partial shape diagram of diamond grinding wheel[42]

    图  10  网格状金刚石钻头工具[43-44]

    Figure  10.  Grid diamond bit tool[43-44]

    图  11  3D打印树脂结合剂金刚石砂轮[45]

    Figure  11.  3D printing resin bond diamond grinding wheel[45]

    图  12  SLM块状试样[50-52]

    Figure  12.  SLM block sample[50-52]

    图  13  SLM工具制备及磨削试验平台[53-57]

    Figure  13.  SLM tool preparation and grinding experiment platform[53-57]

    表  1  增材制造方法及优缺点[20]

    Table  1.   Additive manufacturing methods and their advantages and disadvantages[20]

    成型原理出料方式基本材料优点缺点
    熔融沉积成型
    (FDM)
    挤压 热塑性材料、共晶系统金属材料、
    可食用材料等
    技术成熟,成本低,可实现
    彩色打印
    精度较低,产品具有台阶效应
    立体光固化成型(SLA) 光聚合 光硬化树脂 精度高,表面质量好,原材料
    可重复利用
    成型材料少,成本高,固化过程易收缩形变
    数字光处理成型(DLP) 层压 光硬化树脂 速度快,精度高,表面质量好,
    原材料可重复利用
    成型材料少,成本高,固化过程易收缩形变
    分层实体制造
    (LOM)
    粉末 纸、金属薄膜、塑料和复合材
    料等
    成型快,机械设备寿命长 前处理和后处理复杂,表面质量差,不耐高温等
    喷墨黏粉式
    (PP)
    陶瓷、石膏等 成型快,无需支撑材料,可
    全彩打印
    实体强度低,精细度差等
    激光选区熔化(SLM) 热塑性塑料、金属粉末、陶瓷
    粉末等
    成型速度快,不需要黏结剂,
    成型结构复杂
    力学性能差,表面精度差
    选择性激光烧结(SLS) 热塑性塑料、金属粉末、陶瓷
    粉末等
    成型速度快,成型结构复杂 力学性能差,表面精度差
    直接激光烧结(DMLS) 几乎任何合金 可成型大尺寸实体 结构简单
    电子束选区熔融成型(EBM) 钛合金 成型结构复杂,性能优良 环境要求高,尺寸有限
    电子束自有成型(EBF) 线 几乎任何合金 成型快,性能优良,范围广 环境要求高,精度低
    下载: 导出CSV
  • [1] 朱振东, 刘豪, 张甜, 等. 金刚石表面镀覆技术与应用的研究进展 [J]. 超硬材料工程,2021,33(3):28-32. doi: 10.3969/j.issn.1673-1433.2021.03.008

    ZHU Zhendong, LIU Hao, ZHANG Tian, et al. Research progress of plating technology on the diamond surface and its application [J]. Superhard Material Engineering,2021,33(3):28-32. doi: 10.3969/j.issn.1673-1433.2021.03.008
    [2] 马成新, 史小华. 浅谈金刚石工具的现状与发展趋势 [J]. 超硬材料工程,2015,27(5):45-48.

    MA Chengxin, SHI Xiaohua. A discussion on the current status and development trend of diamond tools [J]. Superhard Material Engineering,2015,27(5):45-48.
    [3] 彭锐涛, 张珊, 唐新姿, 等. 加压内冷却砂轮的研制及磨削性能研究 [J]. 机械工程学报,2017,53(19):187-194. doi: 10.3901/JME.2017.19.187

    PENG Ruitao, ZHANG Shan, TANG Xinzi, et al. Development and grinding performance of a pressurized internal cooling slotted grinding wheel [J]. Journal of Mechanical Engineering,2017,53(19):187-194. doi: 10.3901/JME.2017.19.187
    [4] SHI C, LI X, CHEN Z. Design and experimental study of a micro-groove grinding wheel with spray cooling effect [J]. Chinese Journal of Aeronautics,2014,27(2):407-412. doi: 10.1016/j.cja.2013.07.013
    [5] 张绍和, 唐健, 周侯, 等. 3D打印技术在金刚石工具制造中的应用探讨 [J]. 金刚石与磨料磨具工程,2018,38(2):51-56.

    ZHANG Shaohe, TANG Jian, ZHOU Hou, et al. Three-dimensional printing in the application of diamond tools manufacturing [J]. Diamond & Abrasives Engineering,2018,38(2):51-56.
    [6] 李文霞, 张子煜. 钎焊金刚石工具的发展现状及改进研究 [J]. 热加工工艺,2021,50(17):12-17.

    LI Wenxia, ZHANG Ziyu. Development status and improvement research of brazed diamond tools [J]. Hot Working Technology,2021,50(17):12-17.
    [7] HUANG G, WANG Y, ZHANG M, et al. Brazing diamond grits onto AA7075 aluminium alloy substrate with Ag–Cu–Ti filler alloy by laser heating [J]. Chinese Journal of Aeronautics,2021,34(6):67-78. doi: 10.1016/j.cja.2020.07.005
    [8] 吴颖. 电镀金刚石工具的应用现状及改进研究 [J]. 热加工工艺,2015,44(18):18-21.

    WU Ying. Application status and improved research of electroplated diamond tools [J]. Hot Working Technology,2015,44(18):18-21.
    [9] 王琳, 黄志伟, 李云东, 等. 电镀金刚石工具新工艺 [J]. 电镀与环保,2015,25(5):7-8. doi: 10.3969/j.issn.1000-4742.2015.05.003

    WANG Lin, HUANG Zhiwei, LI Yundong, et al. New technology of preparation of diamond tool by electroplating [J]. Electroplating & Pollution,2015,25(5):7-8. doi: 10.3969/j.issn.1000-4742.2015.05.003
    [10] 徐强, 刘一波, 杨志威. 热压烧结工艺参数对金刚石工具胎体力学性能的影响 [J]. 超硬材料工程,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002

    XU Qiang, LIU Yibo, YANG Zhiwei. Influence of hot press sintering technical parameters on mechanical properties of diamond tools matrix [J]. Superhard Material Engineering,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002
    [11] 冯晓杰. 真空烧结法制备多孔金属结合剂金刚石砂轮 [D]. 南京: 南京航空航天大学, 2008.

    FENG Xiaojie. Fabrication of porous metal-bonded diamond grinding wheels using vacuum sintering [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [12] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化,2013,42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology [J]. Machine Building & Automation,2013,42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001
    [13] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术 [J]. 材料工程,2016,44(2):122-128. doi: 10.11868/j.issn.1001-4381.2016.02.019

    ZHANG Xuejun, TANG Siyi, ZHAO Hengyue, et al. Research status and key technologies of 3D printing [J]. Journal of Materials Engineering,2016,44(2):122-128. doi: 10.11868/j.issn.1001-4381.2016.02.019
    [14] 卢秉恒. 我国增材制造技术的应用方向及未来发展趋势 [J]. 表面工程与再制造,2019,19(1):11-13. doi: 10.3969/j.issn.1672-3732.2019.01.002

    LU Bingheng. Application direction and future development trend of additive manufacturing technology in my country [J]. Surface Engineering & Manufacturing,2019,19(1):11-13. doi: 10.3969/j.issn.1672-3732.2019.01.002
    [15] 卢秉恒. 增材制造技术−现状与未来 [J]. 中国机械工程,2020,31(1):19-23.

    LU Bingheng. Additive manufacturing—current situation and future [J]. China Mechanical Engineering,2020,31(1):19-23.
    [16] DEJA M, ZIELIŃSKI D, KADIR A Z A, et al. Applications of additively manufactured tools in abrasive machining—A literature review [J]. Materials,2021,14(5):1318. doi: 10.3390/ma14051318
    [17] KING W E, ANDERSON A T, FERENCZ R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges [J]. Applied Physics Reviews,2015,2(4):41304. doi: 10.1063/1.4937809
    [18] 胡师柿. 3D打印技术的发展情况综述 [J]. 造纸装备及材料,2021,50(7):76-77. doi: 10.3969/j.issn.1672-3066.2021.07.035

    HU Shishi. A review of the development of 3D printing technology [J]. Papermaking Equipment & Materials,2021,50(7):76-77. doi: 10.3969/j.issn.1672-3066.2021.07.035
    [19] 张衡, 杨可. 增材制造的现状与应用综述 [J]. 包装工程,2021,42(16):9-15.

    ZHANG Heng, YANG Ke. Overview of the present situation and application of additive manufacturing [J]. Packaging Engineering,2021,42(16):9-15.
    [20] 赵延国, 柳传鑫, 许淙博, 等. 3D打印技术及设备发展现状 [J]. 机械研究与应用,2021,34(3):224-227.

    ZHAO Yanguo, LIU Chuanxin, XU Congbo, et al. Development status of 3D printing technology and equipment [J]. Mechanical Research & Application,2021,34(3):224-227.
    [21] ZAKERI S, VIPPOLA M, LEVANEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography [J]. Additive Manufacturing,2020,35:101177.
    [22] 孔祥忠. SLA光固化3D打印成型技术研究 [J]. 中国设备工程,2021(11):207-208. doi: 10.3969/j.issn.1671-0711.2021.11.128

    KONG Xiangzhong. SLA light curing 3D printing technology research [J]. China Plant Engineering,2021(11):207-208. doi: 10.3969/j.issn.1671-0711.2021.11.128
    [23] 余刘洋, 李丹杰, 夏培斌, 等. 陶瓷光固化3D打印技术研究进展及应用 [J]. 橡塑技术与装备,2022,48(1):5-9.

    YU Liuyang, LI Danjie, XIA Peibin, et al. Research progress and application of ceramic light-curing 3D printing technology [J]. China Rubber/Plastics Technology and Equipment,2022,48(1):5-9.
    [24] CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
    [25] 宫玉玺, 王庆顺, 朱丽娟,等. 选择性激光烧结成形设备及原材料的研究现状 [J]. 铸造,2017,66(3):258-262.

    GONG Yuxi, WANG Qingshun, ZHU Lijuan, et al. Review on the progress of forming equipment and materials for SLS [J]. Foundry,2017,66(3):258-262.
    [26] SCHNIDT M, POHLE D, RECHTENWALD T. Selective laser sintering of peek [J]. Cirp Annals,2007,56(1):205-208. doi: 10.1016/j.cirp.2007.05.097
    [27] 刘锦辉. 添加聚合物粉末的316粉末SLS成型与后处理的研究 [D]. 阜新: 辽宁工程技术大学, 2002.

    LIU Jinhui. Study on the SLS molding and post-process of 316 powder added by polymer powder [D]. Fuxin: Liaoning Technical University, 2002.
    [28] SIMCHI A, POHL H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder [J]. Materials Science and Engineering: A,2003,359(1/2):119-128. doi: 10.1016/S0921-5093(03)00341-1
    [29] YAN C, SHI Y, YANG J, et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing [J]. Journal of Materials Processing Technology,2009,209(17):5785-5792. doi: 10.1016/j.jmatprotec.2009.06.010
    [30] WU J, LI M, LIU S, et al. Selective laser sintering of porous Al2O3-based ceramics using both Al2O3 and SiO2 poly-hollow microspheres as raw materials [J]. Ceramics International,2021,47(11):15313-15318. doi: 10.1016/j.ceramint.2021.02.096
    [31] BEAN G E, WITKIN D B, MCLOUTH T D, et al. Process gas influence on microstructure and mechanical behavior of Inconel 718 fabricated via selective laser melting [J]. Progress in Additive Manufacturing,2020,5(4):405-417. doi: 10.1007/s40964-020-00133-7
    [32] YADTOITSEV I, SHISHKOVSKY I, BERTRAND P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting [J]. Applied Surface Science,2009,255(10):5523-5527. doi: 10.1016/j.apsusc.2008.07.154
    [33] 戴冬华, 顾冬冬, 李雅莉, 等. 选区激光熔化W–Cu复合体系熔池熔体运动行为的数值模拟 [J]. 中国激光,2013,40(11):82-90.

    DAI Donghua, GU Dongdong, LI Yali, et al. Numerical simulation of metallurgical behavior of melt pool during selective laser melting of W–Cu composite powder system [J]. Chinese Journal of Lasers,2013,40(11):82-90.
    [34] 田中武司, 蒋修治. 光造型磨具的制作及其性能 [J]. 磨料磨具通讯,2004(1):8-10.

    TAKESHI Tanaka, JIANG Xiuzhi. Manufacture and properties of light modeling abrasives [J]. Abrasives Newsletter,2004(1):8-10.
    [35] HUANG Q, GUO L, MARINESCU I D. Research on the properties of resin bond wheel cured by ultraviolet light [J]. Procedia Manufacturing,2016,5:259-269. doi: 10.1016/j.promfg.2016.08.023
    [36] 杨温鑫, 孟晓燕, 邓欣, 等. 一种基于光固化3D打印成型的金刚石复合材料的制备方法及应用: CN113442430A [P]. 2021-09-28.

    YANG Wenxin, MENG Xiaoyan, DENG Xin, et al. A preparation method and application of a diamond composite material based on photocuring 3D printing: CN113442430A [P]. 2021-09-28.
    [37] GUO L, ZHANG X, CHEN S, et al. An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools [J]. Materials,2019,12(1):125. doi: 10.3390/ma12010125
    [38] GUO L, ZHANG X, LEE C, et al. An experimental study on the abrasive machining process of electronic substrate material with a novel ultraviolet-curable resin bond diamond lapping plate [J]. IEEE Access,2019,7:64375-64385. doi: 10.1109/ACCESS.2019.2917304
    [39] QIU Y, HUANG H. Research on the fabrication and grinding performance of 3-dimensional controllable abrasive arrangement wheels [J]. The International Journal of Advanced Manufacturing Technology,2019,104(5/6/7/8):1839-1853. doi: 10.1007/s00170-019-03900-1
    [40] 邱燕飞. 金刚石磨粒三维可控排布树脂磨具的构造与制备 [D]. 厦门: 华侨大学, 2019.

    QIU Yanfei. Research on the design and fabrication of resin grinding wheels with 3-dimentional controllable diamond abrasive arrangement [D]. Xiamen: Huaqiao University, 2019.
    [41] 李双江, 李基, 肖横洋. 选择性激光烧结(SLS)专利技术综述 [J]. 中国科技信息,2018(11):46-47. doi: 10.3969/j.issn.1001-8972.2018.11.014

    LI Shuangjiang, LI Ji, XIAO Hengyang. Overview of selective laser sintering (SLS) patent technology [J]. China Science and Technology Information,2018(11):46-47. doi: 10.3969/j.issn.1001-8972.2018.11.014
    [42] YANG Z, ZHANG M, ZHANG Z, et al. A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology [J]. Materials & Design,2016,104:292-297.
    [43] WU J, ZHANG S, QU F, et al. Matrix material for a new 3D-printed diamond-impregnated bit with grid-shaped matrix [J]. International Journal of Refractory Metals and Hard Materials,2019,82:199-207. doi: 10.1016/j.ijrmhm.2019.04.017
    [44] WU J, ZHANG S, LIU L, et al. Rock breaking characteristics of a 3D printing grid-matrix impregnated diamond bit [J]. International Journal of Refractory Metals and Hard Materials,2020,89:105212. doi: 10.1016/j.ijrmhm.2020.105212
    [45] DU Z, ZHANG F, XU Q, et al. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes [J]. Ceramics International,2019,45(16):20873-20881. doi: 10.1016/j.ceramint.2019.07.076
    [46] 邹文俊, 陈功武, 宋城, 等. 超硬磨具用金属结合剂国内外研究进展 [J]. 金刚石与磨料磨具工程,2014,34(4):83-88.

    ZOU Wenjun, CHEN Gongwu, SONG Cheng, et al. Review of metal bond material used in superhard abrasive tools [J]. Diamond & Abrasives Engineering,2014,34(4):83-88.
    [47] 孙浩斌, 张华, 姚海滨, 等. 基于激光增材制造高熵合金金刚石复合材料的制备方法: CN110202145A [P]. 2019-09-06.

    SUN Haobin, ZHANG Hua, YAO Haibin, et al. Preparation method of high-entropy alloy diamond composite based on laser additive manufacturing: CN110202145A [P]. 2019-09-06.
    [48] KONSTANTY J. Production parameters and materials selection of powder metallurgy diamond tools [J]. Powder Metallurgy,2006,49(4):299-306. doi: 10.1179/174329006X113508
    [49] 吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展 [J]. 金刚石与磨料磨具工程,2019,39(2):37-45.

    WU Yanping, YAN Qingzhi. Research progress of metal bond diamond tools [J]. Diamond & Abrasives Engineering,2019,39(2):37-45.
    [50] MA Y, JI G, LI X P, et al. On the study of tailorable interface structure in a diamond/Al12Si composite processed by selective laser melting [J]. Materialia,2019,5:100242. doi: 10.1016/j.mtla.2019.100242
    [51] GAN J, GAO H, WEN S, et al. Simulation, forming process and mechanical property of Cu–Sn–Ti/diamond composites fabricated by selective laser melting [J]. International Journal of Refractory Metals and Hard Materials,2020,87:105144. doi: 10.1016/j.ijrmhm.2019.105144
    [52] SPIERINGS A B, LEINENBACH C, KENEL C, et al. Processing of metal-diamond-composites using selective laser melting [J]. Rapid Prototyping Journal,2015,21(2):130-136. doi: 10.1108/RPJ-11-2014-0156
    [53] LI X, WANG C, TIAN C, et al. Digital design and performance evaluation of porous metal-bonded grinding wheels based on minimal surface and 3D printing [J]. Materials & Design,2021,203:109556.
    [54] TIAN C, LI X, ZHANG S, et al. Porous structure design and fabrication of metal-bonded diamond grinding wheel based on selective laser melting (SLM) [J]. The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):1451-1462. doi: 10.1007/s00170-018-2734-y
    [55] TIAN C, LI X, ZHANG S, et al. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM) [J]. Materials & Design,2018,156:52-61.
    [56] TIAN C, LI X, LI H, et al. Study on process and manufacturability of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM) [J]. Journal of Physics: Conference Series, 2019,1303(1):12144.
    [57] TIAN C, LI X, LI H, et al. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM) [J]. Materials Science & Engineering,2018,743:697-706.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  55
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 录用日期:  2022-04-15
  • 收稿日期:  2022-02-13
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回