CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多晶金刚石的等离子体高效抛光技术

肖玉玺 李昕宇 张永杰 邓辉

肖玉玺, 李昕宇, 张永杰, 邓辉. 面向多晶金刚石的等离子体高效抛光技术[J]. 金刚石与磨料磨具工程, 2024, 44(5): 553-562. doi: 10.13394/j.cnki.jgszz.2023.0281
引用本文: 肖玉玺, 李昕宇, 张永杰, 邓辉. 面向多晶金刚石的等离子体高效抛光技术[J]. 金刚石与磨料磨具工程, 2024, 44(5): 553-562. doi: 10.13394/j.cnki.jgszz.2023.0281
XIAO Yuxi, LI Xinyu, ZHANG Yongjie, DENG Hui. Highly efficient polishing of polycrystalline CVD diamond via atmosphere inductively coupled plasma[J]. Diamond & Abrasives Engineering, 2024, 44(5): 553-562. doi: 10.13394/j.cnki.jgszz.2023.0281
Citation: XIAO Yuxi, LI Xinyu, ZHANG Yongjie, DENG Hui. Highly efficient polishing of polycrystalline CVD diamond via atmosphere inductively coupled plasma[J]. Diamond & Abrasives Engineering, 2024, 44(5): 553-562. doi: 10.13394/j.cnki.jgszz.2023.0281

面向多晶金刚石的等离子体高效抛光技术

doi: 10.13394/j.cnki.jgszz.2023.0281
基金项目: 国家自然科学基金面上项目(52375437);深圳市科技创新委员会基础研究重点项目(JCYJ2022081810041202)。
详细信息
    通讯作者:

    邓辉,男,1987年生,副教授、博士研究生导师。主要研究方向:等离子体原子尺度制造技术、原子选择刻蚀技术、原子迁移与重构技术、等离子体光学制造技术。 E-mail: dengh@sustech.edu.cn

  • 中图分类号: TQ164

Highly efficient polishing of polycrystalline CVD diamond via atmosphere inductively coupled plasma

  • 摘要: 作为一种典型的难加工材料,多晶金刚石的抛光存在着材料去除率低、损伤引入较多、难以获得亚纳米级粗糙度等诸多问题。采用一种基于大气电感耦合等离子体的非接触式加工方法,在纯氩等离子体中引入氧气作为反应气,激发产生高活性氧自由基,并在多晶金刚石表面不同位点处发生差异化刻蚀,最终实现多晶金刚石的高效抛光。研究结果表明:随着含氧等离子体辐照的进行,多晶金刚石表面晶粒尖端位点被快速去除,晶粒间的高度差大幅下降,且金刚石表面粗糙度Sa在30 min内从10.10 μm降低至93.70 nm,材料去除率可达34.4 μm/min,远高于传统的机械或化学机械抛光方法。拉曼光谱与X射线衍射谱分析表明,该抛光方法未引入非晶碳或新应力损伤,不改变多晶金刚石表面晶粒取向。该方法可作为一种多晶金刚石粗抛技术,与化学机械抛光、紫外激发抛光等精抛工艺相结合,显著提升多晶金刚石的综合抛光效率。

     

  • 图  1  大气电感耦合等离子体设备

    Figure  1.  Atmosphere inductively coupled plasma setup

    图  2  多晶金刚石表面温度变化曲线

    Figure  2.  Temperature profile of surface of polycrystalline diamond

    图  3  等离子体光学发射光谱

    Figure  3.  Optical emission spectra of plasmas

    图  4  不同等离子体辐照处理20 min结果

    Figure  4.  20 min treatment effect of polycrystalline diamond under radiation of different plasmas

    图  5  多晶金刚石表面形貌随抛光时间变化的结果

    Figure  5.  Morphology of polycrystalline diamond under different polishing durations

    图  6  抛光过程中多晶金刚石表面大尺度范围内形貌演变

    Figure  6.  Morphological evolution of polycrystalline diamond at large scale during polishing

    图  7  抛光过程中多晶金刚石表面小尺度范围内形貌演变

    Figure  7.  Morphological evolution of polycrystalline diamond at small scale during polishing

    图  8  抛光过程中多晶金刚石表面不同范围内粗糙度Sa演变

    Figure  8.  Roughness Sa evolution of polycrystalline diamond at different scale during polishing

    图  9  抛光过程中多晶金刚石材料去除率变化

    Figure  9.  Variation of material removal rate of polycrystalline diamond during polishing

    图  10  多晶金刚石抛光前后拉曼光谱

    Figure  10.  Raman spectra of polycrystalline diamond before and after polishing

    图  11  多晶金刚石抛光前后X射线衍射谱图

    Figure  11.  X-ray diffraction spectra of polycrystalline diamond before and after polishing

    表  1  实验参数

    Table  1.   Experimental parameters

    实验参数 具体条件
    玻璃炬管直径 d /mm 内炬管(内直径/外直径):14/16
    外炬管(内直径/外直径):18/20
    射频电源功率 Q /W 1200
    射频电源频率 f /MHz 27.12
    载流气流速 v1 /slm 1.5
    冷却气流速 v2 /slm 18
    反应气流速 v3 /sccm 60
    工作距离 l /mm 15
    下载: 导出CSV
  • [1] 李明吉. 大尺寸高质量金刚石厚膜制备及氮掺杂对金刚石膜生长的影响研究 [D]. 长春: 吉林大学, 2006.

    LI Mingji. Preparation of large-sized high-quality diamond thick films, and influence of nitrogen doping on the growth of diamond films [D]. Changchun: Jilin University, 2006.
    [2] UMEZAWA H. Recent advances in diamond power semiconductor devices [J]. Materials Science in Semiconductor Processing,2018,78:147-156. doi: 10.1016/j.mssp.2018.01.007
    [3] MOLLART T P, WORT C J H, PICKLES C S J, et al. CVD diamond optical components, multispectral properties, and performance at elevated temperatures [J]. Proceeding SPIE,2001,4375: 180-198. doi: 10.1117/12.439175
    [4] 苑泽伟. 利用化学和机械协同作用的CVD金刚石抛光机理与技术 [D]. 大连: 大连理工大学, 2012.

    YUAN Zewei. Mechanism and technology for polishing CVD diamond with chemical and mechanical synergistic effects [D]. Dalian: Dalian University of Technology, 2012.
    [5] PHUNG H M, TATAR-MATHES P, ROGERS A, et al. Thermal behavior and power scaling potential of membrane external-cavity surface-emitting lasers (MECSELs) [J]. IEEE Journal of Quantum Electronics,2022,58(2):1-11. doi: 10.1109/JQE.2022.3147482
    [6] LIAO M Y. Progress in semiconductor diamond photodetectors and MEMS sensors [J]. Functional Diamond,2021,1(1):29-46. doi: 10.1080/26941112.2021.1877019
    [7] 王伟华, 代兵, 王杨, 等. 金刚石光学窗口相关元件的研究进展 [J]. 材料科学与工艺,2020,28(3):42-57. doi: 10.11951/j.issn.1005-0299.20200074

    WANG Weihua, DAI Bing, WANG Yang, et al. Recent progress of diamond optical window-related components [J]. Material Science and Technology,2020,28(3):42-57. doi: 10.11951/j.issn.1005-0299.20200074
    [8] SONG X, WANG H, WANG X C, et al. Fabrication and evaluation of diamond thick film-Si3N4 brazed cutting tool by microwave plasma chemical vapor deposition method [J]. Journal of Materials Processing Technology,2021,291:117034. doi: 10.1016/j.jmatprotec.2020.117034
    [9] 吕智, 马忠强, 蒋燕麟, 等. 功能金刚石的发展现状及产业化前景 [J]. 超硬材料工程,2020,32(4):22-34. doi: 10.3969/j.issn.1673-1433.2020.04.006

    LV Zhi, MA Zhongqiang, JIANG Yanlin, et al. The development status and industrialization prospect of functional diamond [J]. Superhard Material Engineering,2020,32(4):22-34. doi: 10.3969/j.issn.1673-1433.2020.04.006
    [10] MALSHE A P, PARK B S, BROWN W D, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates [J]. Diamond and Related Materials,1999,8:1198-1213. doi: 10.1016/S0925-9635(99)00088-6
    [11] KABOLI S, BURNLEY P C. Direct observations of crystal defects in polycrystalline diamond [J]. Materials Characterization,2018,142:154-161. doi: 10.1016/j.matchar.2018.05.036
    [12] XIAO C, HSIA F C, SUTTON-COOK A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: A review of mechanisms and processes [J]. Carbon,2022,196:29-48. doi: 10.1016/j.carbon.2022.04.028
    [13] MANDAL S, THOMAS E L H, GINES L, et al. Redox agent enhanced chemical mechanical polishing of thin film diamond [J]. Carbon,2018,130:25-30. doi: 10.1016/j.carbon.2017.12.077
    [14] THOMAS E L H, NELSON G W, MANDAL S, et al. Chemical mechanical polishing of thin film diamond [J]. Carbon,2014,68:473-479. doi: 10.1016/j.carbon.2013.11.023
    [15] WATANABE J J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials [J]. Diamond and Related Materials,2013,39:14-19. doi: 10.1016/j.diamond.2013.07.001
    [16] LIANG Y F, ZHENG Y T, WEI J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction [J]. Diamond and Related Materials,2021,117:108461. doi: 10.1016/j.diamond.2021.108461
    [17] LU Y X, WANG B, MU Q, et al. Nanoscale smooth and damage-free polycrystalline diamond surface ground by coarse diamond grinding wheel [J]. Diamond and Related Materials,2022,125:108971. doi: 10.1016/j.diamond.2022.108971
    [18] OGAWA Y, OTA M, NAKAMOTO K, et al. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools [J]. CIRP Annals,2016,65:245-248. doi: 10.1016/j.cirp.2016.04.081
    [19] RALCHENKO V G, ASHKINAZI E E, ZVEDEEV E V, et al. High-rate ultrasonic polishing of polycrystalline diamond films [J]. Diamond and Related Materials,2016,66:171-176. doi: 10.1016/j.diamond.2016.05.002
    [20] 张翊, 吴兵, 张临风, 等. 面向原子级表面制造的等离子体诱导原子选择刻蚀技术 [J]. 中国科学: 技术科学,2022,52(6):882-892. doi: 10.1360/SST-2021-0584

    ZHANG Yi, WU Bing, ZHANG Linfeng, et al. Atomic surface manufacturing based on plasma-induced atom-selective etching [J]. Scientia Sinica(Technologica),2022,52(6):882-892. doi: 10.1360/SST-2021-0584
    [21] LIU W, XIAO Y X, ZHANG Y J, et al. Highly efficient and atomic-scale smoothing of single crystal diamond through plasma-based atom-selective etching [J]. Diamond and Related Materials,2024,143:110840. doi: 10.1016/j.diamond.2024.110840
    [22] RALCHENKO V G, SMOLIN A A, PEREVERZEV V G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diamond and Related Materials,1995,4:754-758. doi: 10.1016/0925-9635(94)05299-9
    [23] VERES M, KOÓS M, TÓTH S, et al. Sp2 carbon defects in nanocrystalline diamond detected by Raman spectroscopy [J]. IOP Conference Series: Materials Science and Engineering,2010,15(1):012023. doi: 10.1088/1757-899X/15/1/012023
    [24] 朱瑞华, 刘金龙, 陈良贤, 等. 金刚石自支撑膜拉曼光谱1420 cm−1特征峰研究 [J]. 人工晶体学报,2015,44(4):867-871. doi: 10.3969/j.issn.1000-985X.2015.04.003

    ZHU Ruihua, LIU Jinlong, CHEN Liangxian, et al. Research on 1420 cm−1 characteristic peak of free-standing diamond films in Raman spectrum [J]. Journal of Synthetic Crystals,2015,44(4):867-871. doi: 10.3969/j.issn.1000-985X.2015.04.003
    [25] JIANG M, LI L, SUN X M, et al. Research on the mechanism and process of polycrystalline diamond by EDM [J]. The International Journal of Advanced Manufacturing Technology,2023,125:819-830. doi: 10.1007/s00170-022-10770-7
    [26] CHEN K, TAO T, HU W X, et al. High-speed growth of high-quality polycrystalline diamond films by MPCVD [J]. Carbon Letters,2023,33:2003-2010. doi: 10.1007/s42823-023-00534-y
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  167
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-03-11
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回