CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热丝化学气相沉积法制备单晶金刚石的试验研究

张川 刘栋栋 陆明 孙方宏

张川, 刘栋栋, 陆明, 孙方宏. 热丝化学气相沉积法制备单晶金刚石的试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 279-285. doi: 10.13394/j.cnki.jgszz.2023.0101
引用本文: 张川, 刘栋栋, 陆明, 孙方宏. 热丝化学气相沉积法制备单晶金刚石的试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 279-285. doi: 10.13394/j.cnki.jgszz.2023.0101
ZHANG Chuan, LIU Dongdong, LU Ming, SUN Fanghong. Experimental study on synthesis of single crystal diamond by hot filament chemical vapor deposition method[J]. Diamond & Abrasives Engineering, 2024, 44(3): 279-285. doi: 10.13394/j.cnki.jgszz.2023.0101
Citation: ZHANG Chuan, LIU Dongdong, LU Ming, SUN Fanghong. Experimental study on synthesis of single crystal diamond by hot filament chemical vapor deposition method[J]. Diamond & Abrasives Engineering, 2024, 44(3): 279-285. doi: 10.13394/j.cnki.jgszz.2023.0101

热丝化学气相沉积法制备单晶金刚石的试验研究

doi: 10.13394/j.cnki.jgszz.2023.0101
基金项目: 国家自然科学基金项目“基于陶瓷中间过渡层的梯度渐变超纳米金刚石复合涂层制备新技术与应用基础研究”(项目编号:52175424)。
详细信息
    通讯作者:

    孙方宏,男,1965年生,教授,博士生导师。主要研究方向:金刚石化学气相沉积设备与工艺、超硬涂层工具的制备与应用。E-mail:sunfanghong@sjtu.edu.cn

  • 中图分类号: TQ164

Experimental study on synthesis of single crystal diamond by hot filament chemical vapor deposition method

  • 摘要: 热丝化学气相沉积法沉积区域可达12英寸(30.48 cm),其具备大批量生产单晶金刚石的潜力。采用尺寸为3 mm×3 mm×1 mm,(100)取向的单晶金刚石为基体,利用热丝化学气相沉积法以甲烷和氢气为前驱体,同时通入少量氮气进行同质外延生长。结果表明,在热丝温度为2200 ℃、碳源浓度为4%、腔体气压为4 kPa的条件下,单晶金刚石以3.41 μm/h的速度生长,表面无多晶、破口、孔洞等缺陷;外延层X射线衍射光谱在(400)面处峰值的半高宽为0.11°,低于基体的半高宽0.16°,证明外延层具有较高的晶体质量;氮气的引入可以提升单晶金刚石的生长速度,同时降低外延层的晶体质量,较高的氮气浓度还会使得单晶金刚石的生长模式转为岛状生长。

     

  • 图  1  HFCVD单晶外延层Raman光谱与MPCVD单晶基体Raman光谱

    Figure  1.  Raman spectrum of HFCVD single crystal epitaxial layer and Raman spectrum of MPCVD single crystal substrate

    图  2  不同热丝温度条件下单晶金刚石截面Raman mapping面扫描图像及表面Raman点扫描图像

    Figure  2.  Raman mapping image of single crystal diamond cross section under the different condition of filament temperature and Raman point scanning image of surface

    图  3  不同热丝温度条件下单晶金刚石表面形貌

    Figure  3.  Surface morphology of single crystal diamond under the different condition of filament temperature

    图  4  不同碳源浓度条件下单晶金刚石截面Raman mapping面扫描图像及表面Raman点扫描图像

    Figure  4.  Raman mapping image of single crystal diamond cross section under the different condition of carbon source concentration and Raman point scanning image of surface

    图  5  不同碳源浓度条件下单晶金刚石表面形貌

    Figure  5.  Surface morphology of single crystal diamond under the different condition of carbon source concentration

    图  6  不同腔体压力条件下单晶金刚石截面Raman mapping面扫描图像及表面Raman点扫描图像

    Figure  6.  Raman mapping image of single crystal diamond cross section under the different condition of pressure and Raman point scanning image of surface

    图  7  不同腔体压力条件下单晶金刚石表面形貌

    Figure  7.  Surface morphology of single crystal diamond under the different condition of pressure

    图  8  MPCVD单晶金刚石基体和HFCVD单晶金刚石外延层 XRD谱图

    Figure  8.  XRD spectra of MPCVD single crystal diamond substrate HFCVD single crystal diamond epitaxial layer

    图  9  不同氮气流量条件下单晶金刚石截面Raman mapping面扫描图像及表面Raman点扫描图像

    Figure  9.  Raman mapping image of single crystal diamond cross section under the different condition of nitrogen flow and Raman point scanning image of surface

    图  10  不同氮气流量条件下单晶金刚石表面形貌

    Figure  10.  Surface morphology of single crystal diamond under the different condition of nitrogen flow rate

    图  11  氮气流量0.02 sccm条件下单晶金刚石XRD谱图

    Figure  11.  XRD spectra of single crystal diamond at nitrogen flow rate of 0.02 sccm

    图  12  氮气流量0.02 sccm条件下单晶金刚石PL光谱

    Figure  12.  PL spectrum of single crystal diamond at nitrogen flow rate of 0.02 sccm

    表  1  HFCVD法制备单晶金刚石单因素实验方案

    Table  1.   Single-factor experimental scheme for preparing single crystal diamond by HFCVD method

    编号 热丝温度/
    碳源浓度/
    %
    腔体压力/
    kPa
    氮气流量/
    sccm
    生长速度/
    (μm·h−1)
    1 2000 4 4 0 0.45
    2 2200 4 4 0 3.41
    3 2400 4 4 0 4.55
    4 2200 2 4 0 2.84
    5 2200 4 4 0 3.41
    6 2200 6 4 0 3.63
    7 2200 4 2 0
    8 2200 4 4 0 3.41
    9 2200 4 6 0 2.95
    10 2200 4 4 0 3.41
    11 2200 4 4 0.02 5.91
    12 2200 4 4 0.04 6.45
    下载: 导出CSV
  • [1] HUO D, CHENG K. Experimental investigation on micro-milling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapor deposition, and single-crystal diamond micro tools [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2010,224(6):995-1003. doi: 10.1243/09544054JEM1828SC
    [2] DONATO N, ROUGER N, PERNOT J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective [J]. Journal of Physics D: Applied Physics,2019,53(9):093001.
    [3] KOBAYASHI M I, YOSHIHASHI S, YAMANISHI H, et al. Thermal neutron measurement capability of a single crystal cvd diamond detector near the Reactor Core Region of UTR-KINKI [J]. Plasma and Fusion Research,2022,17:2405045-2405045. doi: 10.1585/pfr.17.2405045
    [4] 陆太进. 钻石鉴定和研究的进展 [J]. 宝石和宝石学杂志,2010,12(4):1-5,62.
    [5] TALLAIRE A, ACHARD J, SILVA F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges [J]. Comptes Rendus Physique,2013,14(2/3):169-184. doi: 10.1016/j.crhy.2012.10.008
    [6] 李廷垟, 刘繁, 翁俊, 等. MPCVD高功率外延生长单晶金刚石均匀性研究 [J]. 表面技术,2023(5):278-287.

    LI Tingyang, LIU Fan, WENG Jun, et al. Homogeneity of single crystal diamond under epitaxial growth by MPCVD high power [J]. Surface Technology,2023(5):278-287.
    [7] SHIOMI H, TANABE K, NISHIBAYASHI Y, et al. Epitaxial growth of high quality diamond film by the microwave plasma-assisted chemical-vapor-deposition method [J]. Japanese journal of applied physics,1990,29(1R):34. doi: 10.1143/JJAP.29.34
    [8] BAUER T, SCHRECK M, STERNSCHULTE H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates [J]. Diamond and related materials,2005,14(3/4/5/6/7):266-271. doi: 10.1016/j.diamond.2004.10.043
    [9] LIANG Q, YAN C, LAI J, et al. Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition [J]. Crystal growth & design,2014,14(7):3234-3238.
    [10] ASMUSSEN J, GROTJOHN T A, SCHUELKE T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis [J]. Applied physics letters,2008,93(3):031502. doi: 10.1063/1.2961016
    [11] SCHÄFER L, HÖFER M, KRÖGER R. The versatility of hot-filament activated chemical vapor deposition [J]. Thin Solid Films,2006,515(3):1017-1024. doi: 10.1016/j.tsf.2006.07.073
    [12] AUCIELLO O. Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCDTM) coating [J]. Functional Diamond,2022,2(1):1-24. doi: 10.1080/26941112.2022.2033606
    [13] ZHANG T, WANG L, SUN F, et al. The effect of boron doping on the morphology and growth rate of micron diamond powders synthesized by HFCVD method [J]. Diamond and related materials,2013,40:82-88. doi: 10.1016/j.diamond.2013.10.008
    [14] OHMAGARI S, YAMADA H, UMEZAWA H, et al. Characterization of free-standing single-crystal diamond prepared by hot-filament chemical vapor deposition [J]. Diamond and related materials,2014,48:19-23. doi: 10.1016/j.diamond.2014.06.001
    [15] OHMAGARI S, SRIMONGKON K, YAMADA H, et al. Low resistivity p + diamond (100) films fabricated by hot-filament chemical vapor deposition [J]. Diamond and Related Materials,2015,58:110-114. doi: 10.1016/j.diamond.2015.06.011
    [16] OHMAGARI S, YAMADA H, UMEZAWA H, et al. Growth and characterization of freestanding p + diamond (100) substrates prepared by hot-filament chemical vapor deposition [J]. Diamond and Related Materials,2018,81:33-37. doi: 10.1016/j.diamond.2017.11.003
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  102
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-07-24
  • 录用日期:  2023-08-07
  • 网络出版日期:  2024-06-28
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回