Experimental study on synthesis of single crystal diamond by hot filament chemical vapor deposition method
-
摘要: 热丝化学气相沉积法沉积区域可达12英寸(30.48 cm),其具备大批量生产单晶金刚石的潜力。采用尺寸为3 mm×3 mm×1 mm,(100)取向的单晶金刚石为基体,利用热丝化学气相沉积法以甲烷和氢气为前驱体,同时通入少量氮气进行同质外延生长。结果表明,在热丝温度为2200 ℃、碳源浓度为4%、腔体气压为4 kPa的条件下,单晶金刚石以3.41 μm/h的速度生长,表面无多晶、破口、孔洞等缺陷;外延层X射线衍射光谱在(400)面处峰值的半高宽为0.11°,低于基体的半高宽0.16°,证明外延层具有较高的晶体质量;氮气的引入可以提升单晶金刚石的生长速度,同时降低外延层的晶体质量,较高的氮气浓度还会使得单晶金刚石的生长模式转为岛状生长。Abstract: The deposition area of the hot filament chemical vapor deposition (HFCVD) method can reach 12 inches, which has the potential to produce larger-sized single crystal diamonds. In this study, single crystal diamond with a size of 3 mm × 3 mm × 1 mm and (100) orientation was used as the substrate. Homoepitaxial growth was carried out using the HFCVD method with methane and hydrogen as precursors, and a small amount of nitrogen gas. The results show that under the conditions of a filament temperature of 2200 °C, a carbon source concentration of 4%, and a chamber pressure of 4 kPa, single crystal diamond grows at a rate of 3.41 μm/h. The surface of the diamond exhibits no defects such as polycrystals, cracks, or holes. The full width half maximum (FWHM) of the epitaxial layer’s X-ray diffraction spectrum at the (400) peak is 0.11°, which is lower than that of the substrate at 0.16°, indicating that the crystal quality of the epitaxial layer is higher than that of the substrate. The introduction of nitrogen can increase the growth rate of single crystal diamond, although it reduces the crystal quality of the epitaxial layer. A higher nitrogen concentration can also shift the growth mode of single crystal diamond change to island growth.
-
表 1 HFCVD法制备单晶金刚石单因素实验方案
Table 1. Single-factor experimental scheme for preparing single crystal diamond by HFCVD method
编号 热丝温度/
℃碳源浓度/
%腔体压力/
kPa氮气流量/
sccm生长速度/
(μm·h−1)1 2000 4 4 0 0.45 2 2200 4 4 0 3.41 3 2400 4 4 0 4.55 4 2200 2 4 0 2.84 5 2200 4 4 0 3.41 6 2200 6 4 0 3.63 7 2200 4 2 0 — 8 2200 4 4 0 3.41 9 2200 4 6 0 2.95 10 2200 4 4 0 3.41 11 2200 4 4 0.02 5.91 12 2200 4 4 0.04 6.45 -
[1] HUO D, CHENG K. Experimental investigation on micro-milling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapor deposition, and single-crystal diamond micro tools [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2010,224(6):995-1003. doi: 10.1243/09544054JEM1828SC [2] DONATO N, ROUGER N, PERNOT J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective [J]. Journal of Physics D: Applied Physics,2019,53(9):093001. [3] KOBAYASHI M I, YOSHIHASHI S, YAMANISHI H, et al. Thermal neutron measurement capability of a single crystal cvd diamond detector near the Reactor Core Region of UTR-KINKI [J]. Plasma and Fusion Research,2022,17:2405045-2405045. doi: 10.1585/pfr.17.2405045 [4] 陆太进. 钻石鉴定和研究的进展 [J]. 宝石和宝石学杂志,2010,12(4):1-5,62. [5] TALLAIRE A, ACHARD J, SILVA F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges [J]. Comptes Rendus Physique,2013,14(2/3):169-184. doi: 10.1016/j.crhy.2012.10.008 [6] 李廷垟, 刘繁, 翁俊, 等. MPCVD高功率外延生长单晶金刚石均匀性研究 [J]. 表面技术,2023(5):278-287.LI Tingyang, LIU Fan, WENG Jun, et al. Homogeneity of single crystal diamond under epitaxial growth by MPCVD high power [J]. Surface Technology,2023(5):278-287. [7] SHIOMI H, TANABE K, NISHIBAYASHI Y, et al. Epitaxial growth of high quality diamond film by the microwave plasma-assisted chemical-vapor-deposition method [J]. Japanese journal of applied physics,1990,29(1R):34. doi: 10.1143/JJAP.29.34 [8] BAUER T, SCHRECK M, STERNSCHULTE H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates [J]. Diamond and related materials,2005,14(3/4/5/6/7):266-271. doi: 10.1016/j.diamond.2004.10.043 [9] LIANG Q, YAN C, LAI J, et al. Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition [J]. Crystal growth & design,2014,14(7):3234-3238. [10] ASMUSSEN J, GROTJOHN T A, SCHUELKE T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis [J]. Applied physics letters,2008,93(3):031502. doi: 10.1063/1.2961016 [11] SCHÄFER L, HÖFER M, KRÖGER R. The versatility of hot-filament activated chemical vapor deposition [J]. Thin Solid Films,2006,515(3):1017-1024. doi: 10.1016/j.tsf.2006.07.073 [12] AUCIELLO O. Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCDTM) coating [J]. Functional Diamond,2022,2(1):1-24. doi: 10.1080/26941112.2022.2033606 [13] ZHANG T, WANG L, SUN F, et al. The effect of boron doping on the morphology and growth rate of micron diamond powders synthesized by HFCVD method [J]. Diamond and related materials,2013,40:82-88. doi: 10.1016/j.diamond.2013.10.008 [14] OHMAGARI S, YAMADA H, UMEZAWA H, et al. Characterization of free-standing single-crystal diamond prepared by hot-filament chemical vapor deposition [J]. Diamond and related materials,2014,48:19-23. doi: 10.1016/j.diamond.2014.06.001 [15] OHMAGARI S, SRIMONGKON K, YAMADA H, et al. Low resistivity p + diamond (100) films fabricated by hot-filament chemical vapor deposition [J]. Diamond and Related Materials,2015,58:110-114. doi: 10.1016/j.diamond.2015.06.011 [16] OHMAGARI S, YAMADA H, UMEZAWA H, et al. Growth and characterization of freestanding p + diamond (100) substrates prepared by hot-filament chemical vapor deposition [J]. Diamond and Related Materials,2018,81:33-37. doi: 10.1016/j.diamond.2017.11.003