Analysis of the influence of container structure on the flow characteristics of vertical vibration polishing granular media
-
摘要: 为探究立式振动抛磨设备的容器结构对颗粒介质运动特性的影响,采用ADAMS-EDEM耦合仿真——振动抛磨工艺下的颗粒介质运动特性仿真。首先从颗粒运动轨迹与速度矢量角度分别分析容器结构对颗粒运动特性的影响,其次从深度方向与径向方向综合判断容器结构对颗粒速度与颗粒作用力的影响,最后通过动态力测试实验验证仿真的有效性。实验结果表明:岛状结构有助于颗粒的翻滚运动,阻碍了周向运动。有岛容器内颗粒运动更剧烈,颗粒平均作用力大于无岛。容器结构不会改变颗粒作用力在深度方向与径向方向分布的基本规律,但有岛容器内颗粒作用力在深度方向的增长尤为明显,2组实验均验证了仿真合理性。Abstract: In order to explore the impact of container structure on the motion characteristics of granular media in vertical vibrating grinding equipment, ADAMS-EDEM coupling simulation was used to simulate the motion characteristics of granular media during the vibrating polishing process. Firstly, the influence of container structure on particle motion characteristics is analyzed from the perspective of particle motion trajectory and velocity vector. Secondly, the influence of container structure on particle velocity and particle force is comprehensively judged from the depth direction and radial direction. Finally, the effectiveness of the simulation is verified through dynamic force test experiments. The experimental results show that the island-like structure aids the tumbling movement of particles but hinders circumferential movement. The movement of particles in the container with islands is more violent, and the average force of particles is greater than that of islands. The existence of the island structure does not change the basic law that the particle force gradually increases with depth, but it amplifies the force increase, particularly evident in the island container. However, the existence of the island structure basically does not change the trend of a gradual increase in particle force in the radial direction. The rationality of the simulation is verified by both sets of experiments.
-
Key words:
- vertical vibration /
- coupled simulation /
- dynamic force sensor /
- container
-
表 1 Vibra King 150SX设备参数
Table 1. Parameters of the Vibra King 150SX
名称 参数 电机转速 /(r·min−1) 3 000 容器质量/kg 3.7 容器容积/L 0.43 偏心块质量/kg 0.2 材料参数 密度ρ
/(kg·m−3)泊松比 剪切模量E
/Pa容器 2675 0.28 1.24×1011 滚抛磨块 1150 0.21 3.2×109 相互作用 碰撞恢复
系数静摩擦
系数滚动摩擦
系数滚抛磨块-滚抛磨块 0.75 0.30 0.03 滚抛磨块-容器 0.36 0.26 0.15 表 4 采样点坐标
Table 4. Coordinate of sampling points
轴 1 2 3 4 5 6 X 54 75 96 117 54 75 Z 90 90 90 90 75 75 轴 7 8 9 10 11 12 X 96 117 54 75 96 117 Z 75 75 60 60 60 60 表 5 采样点方位符号定义
Table 5. Symbol definition of direction of sampling points
方位 方位符号定义 1 背对径向颗粒流方向 2 正对周向颗粒流方向 3 正对径向颗粒流方向 4 背对周向颗粒流方向 -
[1] 杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术[M]. 北京: 国防工业出版社, 2011.YANG Shengqiang , LI Wenhui, ChenHongLing, et al. Surface finishing theory and new technology[M]. Beijing: National Defense Industry Press, 2011. [2] 宋春花. 滚磨光整加工过程理论及计算机仿真[M]. 北京: 电子工业出版社, 2011.SONG Chunhua. Barrel finishing process theory and computer simulation[M]. Beijing: Publishing House of Electronics Industry, 2011. [3] 吴远超, 李秀红, 王嘉明, 等. 水平振动抛磨颗粒介质流场特性分析 [J]. 表面技术,2021,50(11):329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035WU Yuanchao, LI Xiuhong, WANG Jiaming, et al. Flow Field Characteristics Analysis of Media for Horizontal Vibratory Mass Finishing [J]. Surface Technology,2021,50(11):329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035 [4] 王秀枝, 杨胜强, 李文辉, 等. 薄壁片状试件贴壁式振动光饰实验研究 [J]. 表面技术,2017,46(10):261-267.WANG Xiuzhi, YANG Shengqiang, LI Wenhui, et al. Experimental Investigation of Adherent Vibratory Finishing for Sheet Specimens [J]. Surface Technology,2017,46(10):261-267. [5] WANG X Z, YANG S Q, LI W H, et al. Vibratory finishing co-simulation based on ADAMS-EDEM with experimental validation [J]. The international journal of manufacturing technology,2018(96):1175-1185. doi: 10.1007/s00170-018-1639-0 [6] KANG Y S, HASHIMOTO F, JOHNSON S P, et al. Discrete element modeling of 3D media motion in vibratory finishing process [J]. CIRP annals,2017,66(1):313-316. doi: 10.1016/j.cirp.2017.04.092 [7] ZHANG C, LIU W, WANG S, et al. Dynamic modeling and trajectory measurement on vibratory finishing [J]. International journal of advanced manufacturing technology,2019,106(1/2):253-263. [8] LUCAS D S M, SPELT J K. Comparison of DEM predictions and measured wall-media contact forces and work in a vibratory finisher [J]. Powder technology,2020(366):434-447. doi: 10.1016/j.powtec.2020.02.014 [9] LUCAS D S M, SPELT J K. Influence of process parameters on average particle speeds in a vibratory finisher [J]. Granular matter,2018,20(4):1-11. [10] FENG L Q, SEBASTIEN K D R, MATHIEU J, et al. DEM simulation of dense granular flows in a vane shear cell: Kinematics and rheological laws [J]. Powder technology,2020(366):722-735. doi: 10.1016/j.powtec.2020.03.008 [11] CHUN Y C, HSIAU S S, LIAO H H, et, al. An improved PVT technique to evaluate the velocity field of non-sphe-rical particles [J]. Power technology,2010,202(1-3):151-161. doi: 10.1016/j.powtec.2010.04.032 [12] CHEN B D, WU P, XING H H, et al. Convection behavior of ellipsoidal particles in a quasi-two-dimensional bed under vertical vibration [J]. Powder technology,2020(363):575-583. doi: 10.1016/j.powtec.2020.01.004 [13] 张建丽, 李文辉, 张荔, 等. 振动式滚磨光整加工过程中的受力测试与分析 [J]. 表面技术,2015(7):120-124.ZHANG Jianli, LI Wenhui, ZAHNG Li, et al. Force Test and Analysis in the Process of Vibratory Barrel Finishing [J]. Surface Technology,2015(7):120-124. [14] HODGSON B S. Vibratory Finishing Appartus: GB2187122A[P]. 1987-09-03 [15] 王志成, 李文辉, 李秀红, 等. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析 [J]. 金刚石与磨料磨具工程,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051WANG Zhicheng, LI Wenhui, LI Xiuhong, et al. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk [J]. Diamond & Abrasives Engineering,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051 [16] 张荔, 李文辉, 杨胜强. 滚磨光整加工中磨料颗粒堆积角的离散元参数标定 [J]. 中国科技论文,2017,30(1):33-40.ZHANG Li, LI Wenhui, YANG Shengqiang. Discrete element parameter calibration of abrasive particle stacking angle in barrel finishing [J]. Chinese Scientific Papers,2017,30(1):33-40. [17] 陈玉楠, 李文辉, 李秀红, 等. 主轴式滚磨光整加工过程中滚抛磨块作用力测试与分析 [J]. 中国表面工程,2017,30(1):33-40. doi: 10.11933/j.issn.1007-9289.20160803001CHENG Yunan, LI Wenhui, LI Xiuhong, et al. Force Test and Analysis of Abrasive in Spindle Barrel Finishing Process [J]. China Surface Engineering,2017,30(1):33-40. doi: 10.11933/j.issn.1007-9289.20160803001 [18] 高佳程, 田蕴卿, 朱永利, 等. 基于完全集合经验模态分解和排列熵的局部放电信号的小波去噪方法. [J]电力系统及其自动化学报, 2018, 30(3): 1-7.GAO Jiacheng, TIAN Yunqing, ZHU Yongli, et al. Wavelet Package Denoising Method for Partial Discharge Signals Based on CEEMD and PE[J]. Proceedings of the CSU-EPSA, 2018, 30(3): 1-7. [19] 高佳程. 电力设备局部放电信号去噪及特征提取方法的研究[D]. 北京: 华北电力大学, 2019.GAO Jiacheng. Study on Denoising and Feature Extraction Approaches for Partial Discharge Signals in Electrical Equipment[D]. Beijing: North China Electric Power University, 2019.