【Objective】To achieve high-quality and low-damage grinding of silicon carbide ceramics. 【Method】 Small diameter diamond was used to conduct grinding experiments on silicon carbide ceramics. Based on the actual morphology characteristics of the grinding wheel and current grinding theory, a model for the maximum undeformed chip thickness of the abrasive particles and a model for the depth of subsurface damage were established. The influence trend of grinding cutting thickness on grinding quality, grinding force, and subsurface damage was analyzed to verify the accuracy of the model. Finally, combined with finite element simulation, the influence of the maximum undeformed chip thickness of abrasive particles on the surface forming mechanism of silicon carbide ceramics during grinding is further revealed. 【Result】 Considering full contact between the grinding wheel and the material surface, when the grinding wheel has a linear speed of 5.23m/s, a feed rate of 10mm/min, and a grinding depth of 20 μ When m is reached, the surface roughness of the workpiece reaches its minimum, which is 0.3865 μ m. And at this time, the sub surface damage depth of the grinding force workpiece also reaches the lowest, only 4.959 μ M; When the grinding wheel has a linear speed of 3.41m/s, a feed rate of 40mm/min, and a grinding depth of 30 μ At m, the maximum grinding force is 9.35N, and the residual height of the surface groove reaches the minimum, only 4.85 μ m. The surface roughness and sub surface damage of the workpiece reach their maximum, with Ra=0.7641, respectively μ M and 7.453 μ M. Comparing the calculated sub surface damage depth of the LI model with experimental values, the maximum error is 16.04%, and the error of other results is less than 15%. 【Conclusion】 The maximum residual height of surface grooves is not only related to grinding force, but also to the number of abrasive particles involved in grinding. It decreases continuously with the increase of grinding wheel feed rate, linear speed, and grinding depth; The surface roughness and sub surface damage are mainly related to the grinding thickness and grinding force, and their changing trends are the same. They increase with the increase of the grinding wheel feed rate and grinding depth, and decrease with the increase of the grinding wheel linear speed. In order to obtain good surface quality after processing, it is necessary to increase the grinding wheel linear speed, reduce the feed rate and grinding depth. The grinding thickness model and LI sub surface damage model are basically correct and have the same trend as the experimental data. Under the selected grinding process parameters in the experiment, the actual grinding thickness of the abrasive particles is within the range of [-31.86%, 13.95%] of the critical chip thickness of silicon carbide ceramics, indicating that the material removal method falls between plastic removal and brittle removal. This proves that controlling the maximum undeformed chip thickness of the abrasive particles can remove the plastic domain of the experimental material and reduce the subsurface damage caused by grinding.