Citation: | ZHAO Huadong, HE Honghui, ZHU Zhenwei, ZHOU Shuaikang, LIU Chang. Online recognition of contour error of diamond roller[J]. Diamond & Abrasives Engineering, 2024, 44(4): 518-527. doi: 10.13394/j.cnki.jgszz.2023.0148 |
[1] |
宋月清, 刘一波. 人造金刚石工具手册 [M]. 北京: 冶金工业出版社, 2014.
SONG Yueqing, LIU Yibo. Handbook of synthetic diamond tools [M]. Beijing: Metallurgical Industry Press, 2014.
|
[2] |
蔡恩磊, 王立平, 孙丽荣, 等. 基于多过程信号的轧辊磨削表面粗糙度智能预测 [J]. 机电工程,2022,39(10):1462-1469.
CAI Enlei, WANG Liping, SUN Lirong, et al. Intelligent prediction of surface roughness in roller grinding based on multi-process signals [J]. Mechanical and Electrical Engineering,2022,39(10):1462-1469.
|
[3] |
王素华, 徐小健, 于飞, 等. 基于振动特征优选和极限学习机的滚动轴承故障诊断 [J]. 深圳大学学报(理工版),2023,40(4):504-512.
WANG Suhua, XU Xiaojian, YU Fei, et al. Fault diagnosis of rolling bearing based on vibration feature optimization and extreme learning machine [J]. Journal of Shenzhen University (Science and Engineering),2023,40(4):504-512.
|
[4] |
迟玉伦, 吴耀宇, 江欢, 等. 基于模糊神经网络与主成分分析的磨削表面粗糙度在线预测 [J]. 计量学报,2022,43(11):1389-1397. doi: 10.3969/j.issn.1000-1158.2022.11.01
CHI Yulun, WU Yaoyu, JIANG Huan, et al. On-line prediction of grinding surface roughness based on fuzzy neural network and principal component analysis [J]. Acta Metrologica Sinica,2022,43(11):1389-1397. doi: 10.3969/j.issn.1000-1158.2022.11.01
|
[5] |
郭力, 龙华, 王艺, 等. 基于卷积神经网络对磨削表面粗糙度声发射智能预测 [J]. 精密制造与自动化,2022(4):9-13.
GUO Li, LONG Hua, WANG Yi, et al. Acoustic emission intelligent prediction of grinding surface roughness based on convolution neural network [J]. Precision Manufacturing and Automation,2022(4):9-13.
|
[6] |
黄双云, 武利冲. 基于小波包分析和BP神经网络的滚动轴承故障诊断研究 [J]. 煤矿机械,2023,44(7):157-160.
HUANG Shuangyun, WU Lichong. Research on rolling bearing fault diagnosis based on wavelet packet analysis and BP neural network [J]. Coal Mine Machinery,2023,44(7):157-160.
|
[7] |
杜福嘉, 黄康, 郭跃楠. 小波包和模糊熵特征融合的轴承故障诊断 [J]. 机械设计与制造, 2023(10): 285-290.
DU Fujia, HUANG Kang, GUO Yuenan. Bearing fault diagnosis based on feature fusion of wavelet packet and fuzzy entropy [J]. Machinery Design and Manufacturing, 2023(10): 285-290.
|
[8] |
PLAZA E G, LOPEZ P J N. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations [J]. Mechanical Systems and Signal Processing,2018,98:902-919. doi: 10.1016/j.ymssp.2017.05.028
|
[9] |
XIAO J Q, LUO Z H. Time-frequency characteristics of vibration signals analysis for large instantaneous impact mill rolling based on wavelet packet [J]. Advanced Materials Research,2013(834/835/836):1061-1064.
|
[10] |
全国磨料磨具标准化技术委员会. 超硬磨料制品 金刚石修整滚轮: JB/T 10040-2017 [S]. 北京: 机械工业出版社, 2017.
National Abrasive Standardization Technical Committee. Superabrasive products: Diamond dressing rollers: JB/T 10040-2017 [S]. Beijing: China Machine Press, 2017.
|
[11] |
孔玲军. MATLAB小波分析超级学习手[M]. 北京: 人民邮电出版社, 2014.
KONG Lingjun. MATLAB super learning handbook for wavelet analysis [M]. Beijing: People's Posts and Telecommunications Press, 2014.
|
[12] |
葛飞, 卫鑫, 董鹏, 等. 基于小波包能量变化率的钢桁架损伤识别研究 [J]. 天津城建大学学报,2023,29(2):101-107. doi: 10.1007/s12209-022-00349-4
GE Fei, WEI Xin, DONG Peng, et al. Research on damage identification of steel truss based on wavelet packet energy change rate [J]. Journal of Tianjin Chengjian University,2023,29(2):101-107. doi: 10.1007/s12209-022-00349-4
|
[13] |
Araújo L R R, Ariya S, Keuton D A, et al. Wavelet-based estimation method for online condition monitoring of dc-link capacitors of distributed energy resources [J]. International Journal of Electrical Power and Energy Systems, 2023, 151(卷): 109141.
ARAÚJO L R R, ARIYA S, KEUTON D A, et al. Wavelet-based estimation method for online condition monitoring of Dc-link capacitors of distributed energy resources [J]. International Journal of Electrical Power and Energy Systems,2023,151:109141.
|
[14] |
王贝伦. 机器学习 [M]. 南京: 东南大学出版社, 2021.
WANG Beilun. Machine learning [M]. Nanjing: Southeast University Press, 2021.
|