CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Xi, KANG Aolong, JIAO Zengkai, KANG Huiyuan, WU Chengyuan, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Effect of diamond particle size on thermophysical properties of diamond /Cu-B alloy composites[J]. Diamond & Abrasives Engineering, 2024, 44(2): 169-178. doi: 10.13394/j.cnki.jgszz.2023.0062
Citation: WANG Xi, KANG Aolong, JIAO Zengkai, KANG Huiyuan, WU Chengyuan, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Effect of diamond particle size on thermophysical properties of diamond /Cu-B alloy composites[J]. Diamond & Abrasives Engineering, 2024, 44(2): 169-178. doi: 10.13394/j.cnki.jgszz.2023.0062

Effect of diamond particle size on thermophysical properties of diamond /Cu-B alloy composites

doi: 10.13394/j.cnki.jgszz.2023.0062
More Information
  • Received Date: 2023-03-14
  • Accepted Date: 2023-07-18
  • Rev Recd Date: 2023-06-30
  • Using copper-boron alloy as the metal matrix and different-sized diamond particles through 110 μm, 230 μm to 550 μm as reinforcement, the diamond/copper-boron alloy composites were prepared via gas pressure infiltration technology under 1100 ℃ and 10 MPa gas pressure. The influences of the size of diamond particles on the configuration, interlayer phase distribution, and thermophysical properties of the composites were investigated. The results show that with the increase of particle size, there is a benefit of better interface bonding, and the thermal conductivity of the diamond/copper-boron composite is enhanced while the thermal expansion coefficient decreases. When the diamond particle size is 500 μm, the best performance of the composite is obtained. The thermal conductivity is 680.3 W/(m·K), and the thermal expansion coefficient increases from 4.095×10−6 K−1 to 7.139×10−6 K−1.

     

  • loading
  • [1]
    李广义, 张俊洪, 高键鑫. 大功率电力电子器件散热研究综述 [J]. 兵器装备工程学报,2020,41(11):8-14. doi: 10.11809/bqzbgcxb2020.11.002

    LI Guangyi, ZHANG Junhong, GAO Jianxin. Review on Heat Dissipation of High Power Electronic Devices [J]. Journal of Ordnance Equipment Engineering,2020,41(11):8-14. doi: 10.11809/bqzbgcxb2020.11.002
    [2]
    BAHUN I, SUNDE V, JAKOPOVIC Z. Estimation of Insulated-gate Bipolar Transistor Operating Temperature: Simulation and Experiment [J]. Journal of Power Electronics,2013,13(4):729-736. doi: 10.6113/JPE.2013.13.4.729
    [3]
    QIAO L, ZHOU H, FU R. Thermal conductivity of AlN ceramics sintered with CaF2 and YF3 [J]. Ceramics International,2003,29(8):893-896. doi: 10.1016/S0272-8842(03)00033-6
    [4]
    刘佩东, 胡晓丹, 宋诗慧, 等. 聚合物基电子封装材料的研究进展 [J]. 工程塑料应用,2022,50(7):160-167. doi: 10.3969/j.issn.1001-3539.2022.07.026

    LIU Peidong, HU Xiaodan, SONG Shihui, et al. Research progress of polymer-based electronic packaging materials [J]. Engineering Plastics Application,2022,50(7):160-167. doi: 10.3969/j.issn.1001-3539.2022.07.026
    [5]
    曾婧, 彭超群, 王日初, 等. 电子封装用金属基复合材料的研究进展 [J]. 中国有色金属学报,2015,25(12):3255-3270.

    ZENG Jing, PENG Chaoqun, WANG Richu, et al. Research and development of metal matrix composites for electronic packaging [J]. The Chinese Journal of Nonferrous Metals,2015,25(12):3255-3270.
    [6]
    张晓辉, 王强. 电子封装用金属基复合材料的研究现状 [J]. 微纳电子技术,2018,55(1):18-25,44.

    ZHANG Xiaohui, WANG Qiang. Research State of Metal-Matrix Composites for Electronic Packaging [J]. Micronanoelectronic Technology,2018,55(1):18-25,44.
    [7]
    张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势 [J]. 中国材料进展,2018,37(12):47, 994-1001.

    ZHANG Di, TAN Zhanqiu, XIONG Dingbang, et al. Application and Prospect of Metal Matrix Composites for Thermal Management: An Overview [J]. Materials China,2018,37(12):47, 994-1001.
    [8]
    WU D, YANG L, SHI C-D, et al. Effects of rolling and annealing on microstructures and properties of Cu/Invar electronic packaging composites prepared by powder metallurgy [J]. Transactions of Nonferrous Metals Society of China,2015,25(6):1995-2002. doi: 10.1016/S1003-6326(15)63808-0
    [9]
    HUANG F Y, CHOW H M, CHEN S L, et al. The machinability of Kovar material [J]. Journal of Materials Processing Technology,1999,87(1/2/3):112-118. doi: 10.1016/S0924-0136(98)00341-0
    [10]
    KIM Y D, OH N L, OH S T, et al. Thermal conductivity of W-Cu composites at various temperatures [J]. MATERIALS LETTERS,2001,51(5):420-424. doi: 10.1016/S0167-577X(01)00330-5
    [11]
    CHEN G Q, WU G H, ZHU D Z, et al. Microstructure and thermal and electric conductivities of high dense Mo/Cu composites [J]. Transactions of Nonferrous Metals Society of China,2005(15):110-114.
    [12]
    GAN J Q, HUANG Y J, WEN C, et al. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al-Si alloys [J]. Transactions of Nonferrous Metals Society of China,2020,30(11):2879-2890. doi: 10.1016/S1003-6326(20)65428-0
    [13]
    LIU Q Y, WANG F, SHEN W, et al. Influence of interface thermal resistance on thermal conductivity of SiC/Al composites [J]. Ceramics International,2019,45(17):23815-23819. doi: 10.1016/j.ceramint.2019.07.358
    [14]
    ZHANG H L, WU J H, ZHANG Y, et al. Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration [J]. Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing,2015(626):362-368. doi: 10.1016/j.msea.2014.11.077
    [15]
    LIU D G, TIAN H, LIN L J, et al. Microstructure, mechanical and elevated temperature tribological behaviors of the diamond/Cu composites prepared by spark plasma sintering method [J]. Diamond And Related Materials,2019(91):138-143. doi: 10.1016/j.diamond.2018.10.022
    [16]
    MA L, ZHANG L, ZHAO P, et al. A new design of composites for thermal management: Aluminium reinforced with continuous CVD diamond coated W spiral wires [J]. Materials & Design,2016(101):109-16.
    [17]
    陈贞睿, 刘超, 谢炎崇, 等. 高导热金属基复合材料的制备与研究进展 [J]. 粉末冶金技术,2022,40(1):40-52.

    CHEN Zhenrun, LIU Chao, XIE Yan chong, et al. Preparation and research process of high thermal conductivity metalmatrix composites [J]. Powder Metallurgy Technology,2022,40(1):40-52.
    [18]
    贾鑫, 魏俊俊, 黄亚博, 等. 金刚石散热衬底在GaN基功率器件中的应用进展 [J]. 表面技术,2020,49(11):111-123.

    JIA Xin, WEI Junjun, HUANG Yabo, et al. Application progress of diamond heat dissipation substrate in GaN-based power devices [J]. Surface Technology,2020,49(11):111-123.
    [19]
    孟汝浩, 左宏森, 李跃, 等. 热管理用金刚石/Cu复合材料的研究进展 [J]. 超硬材料工程,2022,34(1):46-51. doi: 10.3969/j.issn.1673-1433.2022.01.010

    MENG Ruhao, ZUO Hongsen, LI Yue, et al. Research progress of diamond/Cu composites for thermal management [J]. Superhard Material Engineering,2022,34(1):46-51. doi: 10.3969/j.issn.1673-1433.2022.01.010
    [20]
    李明君, 马永, 高洁, 等. 高导热金刚石/铜复合材料研究进展 [J]. 中国表面工程, 2022, 35(4): 140-50.

    LI Mingjun, MA Yong, GAO Jie, et al. Research progress of diamond/Cu composites for thermal management [J]. China Surface Engineering, 2022, 35(4): 140-150.
    [21]
    DAI S G, LI J W, WANG C J. Preparation and thermal conductivity of tungsten coated diamond/copper composites [J]. Transactions of Nonferrous Metals Society of China,2022,32(9):2979-2992. doi: 10.1016/S1003-6326(22)65997-1
    [22]
    王元元, 马捷, 李辉, 等. 金刚石粉体表面CVD法镀钨的工艺研究 [J]. 表面技术,2017,46(2):98-102.

    WANG Yuanyuan, MA Jie, LI Hui, et al. Technical study of tungsten plating on surface of diamond powder by CVD [J]. Surface Technology,2017,46(2):98-102.
    [23]
    CHO H J, KIM Y J, ERB U. Thermal conductivity of copper-diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles [J]. Composites Part B-Engineering,2018(155):197-203. doi: 10.1016/j.compositesb.2018.08.014
    [24]
    SHEN X Y, HE X B, REN S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites [J]. Journal of Alloys and Compounds,2012(529):134-139. doi: 10.1016/j.jallcom.2012.03.045
    [25]
    ZHANG H D, ZHANG J J, LIU Y, et al. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface [J]. Scripta Materialia,2018(152):84-88. doi: 10.1016/j.scriptamat.2018.04.021
    [26]
    XIE Z N, GUO H, ZHANG X M, et al. Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying [J]. Diamond and Related Materials,2021,114(8):108309.
    [27]
    CHU K, JIA C C, GUO H, et al. Microstructure and thermal conductivity of Cu-B/diamond composites [J]. Journal of Composite Materials,2013,47(23):2945-2953. doi: 10.1177/0021998312460259
    [28]
    张晓宇, 蔺伟康, 许旻, 等. 添加稀土Nd改善金刚石/铜复合材料界面 [J]. 表面技术,2018,47(5):27-32.

    ZHANG Xiaoyu, LIN Weikang, XU Min, et al. Adding rare earth Nd to improve the interface of diamond/copper composites [J]. Surface Technology,2018,47(5):27-32.
    [29]
    KIDALOV S V, SHAKHOV F M. Thermal Conductivity of Diamond Composites [J]. MATERIALS,2009,2(4):2467-2495. doi: 10.3390/ma2042467
    [30]
    CHEN C, GUO H, CHU K, et al. Thermal conductivity of diamond/copper composites with a bimodal distribution of diamond particle sizes prepared by pressure infiltration method [J]. RARE METALS,2011,30(4):408-413. doi: 10.1007/s12598-011-0405-3
    [31]
    胡熠闻, 傅蔡安, 于培师, 等. 铝基金刚石复合材料热性能的数值模拟与实验验证 [J]. 材料热处理学报,2022,43(3):134-141.

    HU Yiwen, FU Caian, YU Peishi, et al. Numerical simulation and experimental verification of thermal properties of diamond/Al composites [J]. Transactions of Materials and Heat Treatment,2022,43(3):134-141.
    [32]
    BATTABYAL M, BEFFORT O, KLEINER S, et al. Heat transport across the metal-diamond interface [J]. Diamond and Related Materials,2008,17(7/8/9/10):1438-1442.
    [33]
    崔巍. 熔渗法制备金刚石/铜复合材料及其性能 [D]. 北京: 北京科技大学, 2016.

    CUI Wei . Preparation and properties of diamond/copper composite materials by infiltration method [D]. Beijing: Beijing University of Science and Technology, 2016.
    [34]
    康翱龙, 康惠元, 焦增凯, 等. 气压熔渗法制备高导热金刚石/Cu–B合金复合材料 [J]. 金刚石与磨料磨具工程,2022,42(6):667-675.

    KANG Aolong, KANG Huiyuan, JIAO Zengkai, et al. Preparation f high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method [J]. Diamond & Abrasives Engineering,2022,42(6):667-675.
    [35]
    TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: Process optimization and thermal properties [J]. Composites Part B-Engineering,2013(47):173-180. doi: 10.1016/j.compositesb.2012.11.014
    [36]
    TAVANGAR R, MOLINA J M, WEBER L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast [J]. Scripta Materialia,2007,56(5):357-360. doi: 10.1016/j.scriptamat.2006.11.008
    [37]
    梁远龙, 姜国圣. 表面镀钨金刚石/铜复合材料的有限元模拟 [J]. 粉末冶金技术, 2019, 37(4): 283-287.

    LIANG Yuanlong, JIANG Guosheng. Finite element simulation of tungsten-coated diamond/copper composites [J]. Powder Metallurgy Technology, 2019, 37(4): 283-287.
    [38]
    白光珠. Cu-B/diamond复合材料的制备、结构与性能 [D]. 北京: 北京科技大学, 2020.

    BAI Guangzhu. Preparation, structure and properties of Cu-B/diamond composites [D]. Beijing: Beijing University of Science and Technology, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (85) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return