CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
HUANG Fenping, SHU Xiayun, XU Weijing, CHANG Xuefeng. Simulation and experimental study of single-crystal silicon laser assisted cutting based on SPH method[J]. Diamond & Abrasives Engineering, 2023, 43(6): 727-734. doi: 10.13394/j.cnki.jgszz.2023.0025
Citation: HUANG Fenping, SHU Xiayun, XU Weijing, CHANG Xuefeng. Simulation and experimental study of single-crystal silicon laser assisted cutting based on SPH method[J]. Diamond & Abrasives Engineering, 2023, 43(6): 727-734. doi: 10.13394/j.cnki.jgszz.2023.0025

Simulation and experimental study of single-crystal silicon laser assisted cutting based on SPH method

doi: 10.13394/j.cnki.jgszz.2023.0025
More Information
  • Received Date: 2023-02-16
  • Accepted Date: 2023-04-06
  • Rev Recd Date: 2023-03-29
  • Available Online: 2023-11-06
  • Fine cracks are easy to occur in the processing of monocrystalline silicon, which affects the surface processing quality. Laser assisted machining (LAM) can soften the substitute machining area, effectively reduce the cutting force, extend the tool life and improve the surface quality. In this paper, a thermo mechanical coupled smooth particle model is established to simulate the laser assisted turning process of single crystal silicon. Under different temperature conditions, crack propagation damage and cutting stress are explored. The influence of speed and cutting depth on surface roughness. Finally, the accuracy of simulation results is verified by laser assisted cutting experiments. The results show that increasing the temperature is beneficial to the plastic cutting of monocrystalline silicon. With the increase of the cutting zone temperature, the tool stress gradually decreases. The tool stress at 300 ℃ is about 50% lower than that at room temperature, and the surface processing quality is significantly improved. At 600 ℃, the chip is a plastic flow sawtooth line, and the plasticity is greatly improved. During cutting, a smaller cutting depth shall be selected, the rotating speed shall be lower than 4 500 r/min, and the surface roughness Sa of monocrystalline silicon can be less than 1 nm.

     

  • loading
  • [1]
    吴明明, 周兆忠, 巫少龙. 单晶硅片的制造技术 [J]. 新技术工艺,2004(5):7-10.

    WU Mingming, ZHOU Zhaozhon, WU Shaolong. Manufacturing technique of monocrystal silicon wafers [J]. New Technology,2004(5):7-10.
    [2]
    朱惠臣, 孙晓光, 杜黎明. 我国集成电路专用材料发展状况分析 [J]. 工艺与制造,2021,38(2):22-25.

    ZHU Huichen, SUN Xiaoguang, DU Liming. Analysis on development of IC special materials in China [J]. Process and Fabrication,2021,38(2):22-25.
    [3]
    GUO X G, WEI Y G, JIN Z G, et al. A numerical model for optical glass cutting based on SPH method [J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5/6/7/8): 1277–1283
    [4]
    MADAJ M, PÍŠKA M. On the SPH orthogonal cutting simulation of A2024-T351 alloy [J]. Procedia CIRP , 2013, 8: 152–157. DOI: 10.1016/j.procir.2013.06.081
    [5]
    朱帮迎. 单晶硅精密切削仿真与实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHU Bangying. Simulation and experiment of ultra-precision cutting single crystal silicon [D]. Harbin: Harbin Institute of Technology, 2015.
    [6]
    MOHAMMADI H, RAVINDRA D, KODE S K, et al. Experimental work on micro laser-assisted diamond turning of silicon(111) [J]. Journal of Manufacturing Processes,2015,19(8):125-128. doi: 10.1016/j.jmapro.2015.06.007
    [7]
    GUO Y J, YANG X J, KE J Y, et al. Experimental investigations on the laser-assisted machining of single crystal Si for optimal machining [J]. Optics & Laser Technology,2021,141:1-9. doi: 10.1016/j.optlastec.2021.107113
    [8]
    HE W B, LIU C L, XU G Q, et al. Effect of temperature on ductile-to-brittle transition in diamond cutting of silicon[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116: 3447–3462
    [9]
    KE J Y, CHEN X, LIU C L, et al. Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting [J]. The International Journal of Advanced Manufacturing Technology,2021,118:9-10. doi: 10.1007/s00170-021-08132-w
    [10]
    UMBRELLO D, M’SAOUBI R, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel [J]. International Journal of Advanced Manufacturing Technology,2007,47(3):462-470. doi: 10.1016/j.ijmachtools.2006.06.006
    [11]
    LIU C, SHI Y. Modelling and simulation of laser assisted milling process of titanium alloy [J]. Procedia CIRP, 2014, 24: 134–139
    [12]
    吴雪峰. 激光加热辅助切削氮化硅陶瓷技术的基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011: 15-17.

    WU Xuefeng. Basic research on laser assisted machining of silicon nitride ceramics [D]. Harbin: Harbin Institute of Technology, 2011: 15-17.
    [13]
    NAM J, KIM T, CHO S W. A numerical cutting model for brittle materials using smooth particle hydrodynamics [J]. The International Journal of Advanced Manufacturing Technology, 2016, 82: 133–141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (291) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return