CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160
Citation: YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160

Model and experimental verification of grinding surface roughness based on acoustic emission

doi: 10.13394/j.cnki.jgszz.2022.0160
More Information
  • Received Date: 2022-09-22
  • Accepted Date: 2022-12-08
  • Rev Recd Date: 2022-12-08
  • Available Online: 2023-12-07
  • To predict the surface roughness in the grinding process, an acoustic emission device (AE) was incorporated into the grinding process to monitor the grinding state using AE signals. The variations in AE signal characteristic parameters and frequency spectrum with respect to grinding parameters, such as grinding depth ap, grinding wheel speed vs and feed speed vw were analyzed. The results show that as ap and vw increase, the effective values and ringing count values of the AE signal's characteristic parameters both increase. The main energy concentration spectrum of the AE signal is between 90 and 140 kHz, and the corresponding spectrum amplitude shows a gradual increasing trend. With the gradual increase of vs, the effective value of AE signal characteristic parameters gradually decreases, the ringing count value gradually increases, and the spectral amplitude corresponding to the frequency band shows a gradual decreasing trend. Further data analysis reveals the corresponding relationship between AE signal characteristic parameters and machining surface roughness, providing a sample for establishing a surface roughness prediction model. The multi-information fusion algorithm, based on a BP neural network, is used to reasonably fuse various characteristic parameters of the AE signal. And the multi-information fusion prediction model for grinding surface roughness based on AE signal was established. After experimental verification, this model can predict the roughness of the ground surface in actual production.

     

  • loading
  • [1]
    ZHENG X H, LIU Z Q, GUO G Q, et al. Experimental research of grinding TC4 titanium alloy using green silicon carbide wheel [J]. Key Engineering Materials,2011,487:121-125. doi: 10.4028/www.scientific.net/KEM.487.121
    [2]
    HUANG S T, YU X L. A study of grinding forces of SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2018,94(9/10/11/12):3633-3639. doi: 10.1007/s00170-017-1115-2
    [3]
    PAN Y, WANG Y, ZHOU P, et al. Activation functions selection for BP neural network model of ground surface roughness [J]. Journal of Intelligent Manufacturing,2020,31:1825-1836. doi: 10.1007/s10845-020-01538-5
    [4]
    陈明, 朱明武. 声发射在磨削难加工材料中的应用 [J]. 南京理工大学学报,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001

    CHEM Ming, ZHU Mingwu. Application of acoustic emission signal in grinding difficult-to-machine materials [J]. Journal of Nanjing University of Science and Technology,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001
    [5]
    刘贵杰, 巩亚东, 王宛山. 声发射技术在磨削加工监测中的应用 [J]. 机械工程师,2001(12):4-6.

    LIU Guijie, GONG Yadong, WANG Wanshan. Applications of acoustic emission technology in monitoring of grinding processes [J]. Mechanical Engineer,2001(12):4-6.
    [6]
    DING N, ZHAO C L, LUO X C, et al. An intelligent prediction of surface roughness on precision grinding [J]. Solid State Phenomena, 2017, 261: 221-225.
    [7]
    ARUN A, RAMESHKUMER K, UNNIKRISHNAN D, et al. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor [J]. Materials Today: Proceedings,2018,5(5):11888-11899. doi: 10.1016/j.matpr.2018.02.162
    [8]
    LIU H, XU S H, GE X M, et al. Automatic sedimentary microfacies identification from logging curves based on deep process neural network [J]. Cluster Computing,2019,22:12451-12457. doi: 10.1007/s10586-017-1656-z
    [9]
    HWEJU Z, ABOU-El-HOSSEIN K. Surface roughness prediction based on acoustic emission signals in high-precision diamond turning of rapidly solidified optical aluminum grade (RSA443) [J]. Key Engineering Materials, 2020, 841: 363-368.
    [10]
    郭力, 杜厚斌, 邓喻. 硬质合金PA30高速深磨过程中声发射信号特征的变化研究 [J]. 金刚石与磨料磨具工程,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008

    GUO Li, DU Houbin, DENG Yu. Characteristic changes of acoustic emission(AE) signal during high speed deep grinding of cemented carbide PA30 [J]. Diamond & Abrasives Engineering,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008
    [11]
    PANDIYAN V, CAESARENDRA W, TJAHJOWIDODO T, et al. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm [J]. Journal of Manufacturing Processes,2018,31:199-213. doi: 10.1016/j.jmapro.2017.11.014
    [12]
    MAHATA S, SHAKYA P, BABU N R. A robust condition monitoring methodology for grinding wheel wear identification using Hilbert Huang transform [J]. Precision Engineering,2021,70:77-91. doi: 10.1016/j.precisioneng.2021.01.009
    [13]
    QI J, CHEN B, ZHANG D. Multi-information fusion-based belt condition monitoring in grinding process using the improved-Mahalanobis distance and convolutional neural networks [J]. Journal of Manufacturing Processes,2020,59:302-315. doi: 10.1016/j.jmapro.2020.09.061
    [14]
    WANG N, ZHANG G, REN L, et al. Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm [J]. Journal of Manufacturing Processes,2021,66:281-292. doi: 10.1016/j.jmapro.2021.04.014
    [15]
    LIU C W, CHEN H C, LIN S C. Acoustic emission monitoring system for hard polishing of sapphire wafer [J]. Sensors and Materials,2019,31(9):2681-2689. doi: 10.18494/SAM.2019.2369
    [16]
    WANG R, JIANG J C, PAN Y, et al. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices [J]. Journal of Hazardous Materials,2009,166(1):155-186. doi: 10.1016/j.jhazmat.2008.11.005
    [17]
    GAO L, LI F, HUO P D, et al. Accurate prediction of the extrusion forming bonding reliability for heterogeneous welded sheets based on GA-BP neural network [J]. The International Journal of Advanced Manufacturing Technology,2021,117:765-774. doi: 10.1007/s00170-021-07797-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (522) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return