CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
KANG Aolong, KANG Huiyuan, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method[J]. Diamond &Abrasives Engineering, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017
Citation: KANG Aolong, KANG Huiyuan, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method[J]. Diamond &Abrasives Engineering, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017

Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method

doi: 10.13394/j.cnki.jgszz.2022.0017
  • Received Date: 2022-03-08
  • Rev Recd Date: 2022-05-12
  • The Cu–B alloy with boron mass fraction of 0.5% was used as the metal matrix, and the diamond with an average particle size of 500 μm was used as reinforcement, the diamond/Cu–B alloy composites were prepared by gas pressure infiltration method. The effects of gas pressure parameters on the microstructures and the thermophysical properties of the composites were studied. The results show that the interfacial bonding effect and the thermal conductivity between diamond and Cu–B alloy are enhanced and the thermal expansion coefficient is reduced with the increase of gas pressure. When the gas pressure is 10 MPa, the interfacial bonding effect is the best. The carbide layer formed at the interface completely covers the diamond, the thermal conductivity of the sample at 100 ℃ is 680.3 W/(m·K), and the thermal expansion coefficient is 5.038×10−6 K−1, which meets the thermal expansion coefficient requirements of electronic packaging materials.

     

  • loading
  • [1]
    RYELANDT S, MERTENS A, DELANNAY F. Al/stainless-invar composites with tailored anisotropy for thermal management in light weight electronic packaging [J]. Materials & Design,2015,85:318-323.
    [2]
    GU X, WANG D, WANG Y, et al. Mechanical property of alumina ceramic AgCuTi/Kovar alloy brazed joint [J]. Materials Science and Technology,2007,15(3):366-369.
    [3]
    胡海亭, 胡明, 孟君晟. 热压对喷涂SiCp/Al复合材料组织和热性能的影响 [J]. 表面技术,2009(5):6-8.

    HU Haiting, HU Ming, MENG Junsheng. Effects of hot pressed treatment on microstructure and thermal properties of sprayed SiCp/Al composites [J]. Surface Technology,2009(5):6-8.
    [4]
    邓安强, 樊静波, 谭占秋, 等. 金刚石/铜复合材料在电子封装材料领域的研究进展 [J]. 金刚石与磨料磨具工程,2010,30(5):56-61.

    DENG Anqiang, FAN Jingbo, TAN Zhanqiu, et al. Research progress of diamond/Cu composite material for electronic packaging [J]. Diamond & Abrasives Engineering,2010,30(5):56-61.
    [5]
    李志强, 谭占秋, 范根莲, 等. 高效热管理用金属基复合材料研究进展 [J]. 中国材料进展,2013,32(7):431-440.

    LI Zhiqiang, TAN Zhanqiu, FAN Genlian, et al. Progress of metal matrix composites for efficient thermal management applications [J]. Materials China,2013,32(7):431-440.
    [6]
    安俊杰, 魏秋平, 叶文涛, 等. 泡沫铜表面改性对化学气相沉积高质量泡沫金刚石的影响 [J]. 表面技术,2020,49(3):97-105.

    AN Junjie, WEI Qiuping, YE Wentao, et al. High quality diamond films deposited on surface modified Cu foams by chemical vapor deposition method [J]. Surface Technology,2020,49(3):97-105.
    [7]
    AZINA C, CORNU I, SILVAIN J, et al. Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials [J]. AIP Advances,2019,9(5):055315. doi: 10.1063/1.5052307
    [8]
    WANG L, LI J, CHE Z, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites [J]. Journal of Alloys and Compounds,2018,749:1098-1105. doi: 10.1016/j.jallcom.2018.03.241
    [9]
    SANG J, YANG W, ZHU J, et al. Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment [J]. Journal of Alloys and Compounds,2018,740:1060-1066. doi: 10.1016/j.jallcom.2018.01.078
    [10]
    ZHAO C, WANG J. Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications [J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing,2013,588:221-227. doi: 10.1016/j.msea.2013.09.034
    [11]
    WANG L, LI J, CATALANO M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer [J]. Composites Part A: Applied Science and Manufacturing,2018,113:76-82. doi: 10.1016/j.compositesa.2018.07.023
    [12]
    BAI G, WANG L, ZHANG Y, et al. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix [J]. Materials Characterization,2019,152:265-275. doi: 10.1016/j.matchar.2019.04.015
    [13]
    HE J, WANG X, ZHANG Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method [J]. Composites Part B: Engineering,2015,68:22-26. doi: 10.1016/j.compositesb.2014.08.023
    [14]
    张晓宇, 蔺伟康, 许旻, 等. 添加稀土Nd改善金刚石/铜复合材料界面 [J]. 表面技术,2018,47(5):27-32.

    ZHANG Xiaoyu, LIN Weikang, XU Min, et al. Adding rare earth Nd to improve the interface of diamond/copper composites [J]. Surface Technology,2018,47(5):27-32.
    [15]
    ZHANG X, XU M, CAO S, et al. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3 [J]. Diamond and Related Materials,2020,104:107755. doi: 10.1016/j.diamond.2020.107755
    [16]
    ZHANG H, LIU Y, ZHANG F, et al. Hot deformation behavior and processing maps of diamond/Cu composites [J]. Metallurgical & Materials Transactions A,2018,49(6):1-11.
    [17]
    YANG L, SUN L, BAI W, et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering [J]. Diamond and Related Materials,2019,94:37-42. doi: 10.1016/j.diamond.2019.02.014
    [18]
    RUCH R W, BEFFORT O, KLEINER S, et al. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity [J]. Composites Science and Technology,2006,66(15):2677-2685.
    [19]
    CHEN H, JIA C, LI S, et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique [J]. International Journal of Minerals Metallurgy and Materials,2012,19(4):364-371. doi: 10.1007/s12613-012-0565-7
    [20]
    BAI G, LI N, WANG X, et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration [J]. Journal of Alloys and Compounds,2018,735:1648-1653. doi: 10.1016/j.jallcom.2017.11.273
    [21]
    SINHA V, SPOWART J. Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites [J]. Journal of Materials Science,2013,48(3):1330-1341. doi: 10.1007/s10853-012-6878-0
    [22]
    CHENG Y, BIAN L, WANG Y, et al. Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites [J]. International Journal of Solids and Structures,2014,51(18):3168-3176. doi: 10.1016/j.ijsolstr.2014.05.007
    [23]
    赵玉涛, 戴起勋, 陈刚. 金属基复合材料 [M]. 北京: 机械工业出版社, 2007.

    ZHAO Yutao, DAI Qixun, CHEN Gang. Metal matrix composites [M]. Beijing: China Machine Press, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (84) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return