CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
XIA Xin, YU Han, HUA Tengyu, MA Li, CHEN Yubai, TANG Changren, LIANG Yu, WANG Yijia, DENG Zejun, ZHOU Kezhao, YU Zhiming, WEI Qiuping. Effect of boron doping gradient on cemented carbide diamond coatings[J]. Diamond &Abrasives Engineering, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014
Citation: XIA Xin, YU Han, HUA Tengyu, MA Li, CHEN Yubai, TANG Changren, LIANG Yu, WANG Yijia, DENG Zejun, ZHOU Kezhao, YU Zhiming, WEI Qiuping. Effect of boron doping gradient on cemented carbide diamond coatings[J]. Diamond &Abrasives Engineering, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014

Effect of boron doping gradient on cemented carbide diamond coatings

doi: 10.13394/j.cnki.jgszz.2022.0014
  • Received Date: 2022-03-03
  • Accepted Date: 2022-05-25
  • Rev Recd Date: 2022-05-19
  • To improve the binding properties of diamond coating on carbide tools, three micrometer crystal diamond coatings were successfully deposited on YG8 carbide substrate via hot-filament chemical vapor deposition, whose boron gradient ranged from high (HGBMCD) to low (LGBMCD) and zero (MCD). The effect of the gradient size of the decreasing concentration of boron doping method on the nucleation and growth properties of diamond coatings during deposition was investigated. The results showed that the nucleation density of diamond increased with the doping of boron and that the diamond grains became smaller and more uniform after six-hour growth. Among them, the grain size of LGBMCD was mostly in the range of 2 to 3 μm. In addition, the graphite phase in the gradient boron-doped diamond coating was inhibited throughout the growth process, and IDia/IG was up to 14.65 in HGBMCD. The concentrations of the boron and cobalt compounds (i.e., Co2B and CoB) increased as the boron doping gradient decreased. Meanwhile, the residual stress in the diamond coatings gradually changed from compressive stress to tensile stress due to the doping of gradient boron, and the calculated residual stress decreased first and then increased, with the minimum residual stress of –0.255 GPa. Rockwell indentation showed that the gradient doping of boron improved the binding properties of diamond coatings, and that the optimal binding properties were observed at the LGBMCD, which was up to HF2 level at 1 470 N. Therefore, a proper boron doping gradient was demonstrated to improve the quality and binding performance of diamond coatings.


  • loading
  • [1]
    WEN C L, WU Y S, CHANG H C, et al. Enhancing the adhesion of diamond films on cobalt-cemented tungsten carbide substrate using tungsten particles via MPCVD system [J]. Journal of Alloys & Compounds,2011,509(12):4433-4438.
    WANG L, WEI Q P, YU Z M, et al. Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer [J]. Journal of Central South University of Technology,2011,18(6):1819-1824. doi: 10.1007/s11771-011-0908-y
    WANG X C, WANG C C, HE W K, et al. Co evolutions for WC–Co with different Co contents during pretreatment and HFCVD diamond film growth processes [J]. Transactions of Nonferrous Metals Society of China,2018,28(3):469-486. doi: 10.1016/S1003-6326(18)64680-1
    熊超, 李烈军, 苏东艺, 等. 预处理对金刚石薄膜质量及结合力的影响 [J]. 表面技术,2018,47(1):203−210. doi: 10.16490/j.cnki.issn.1001-3660.2018.01.032

    XIONG Chao, LI Liejun, SU Dongyi, et al. Effects of pretreatment on quality and adhesion of diamond films on cemented carbides [J]. Surface Technology,2018,47(1):203−210. doi: 10.16490/j.cnki.issn.1001-3660.2018.01.032
    SUN F H, ZHANG Z M, CHEN M, et al. Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools [J]. Diamond & Related Materials,2003,12(3/4/5/6/7):711-718.
    赵齐, 代明江, 韦春贝, 等. 厚钛过渡层缓解铜基上热丝CVD金刚石薄膜内应力 [J]. 表面技术,2013,42(5):19−23. doi: 10.16490/j.cnki.issn.1001-3660.2013.05.003

    ZHAO Qi, DAI Mingjiang, WEI Chunbei, et al. Thick titanium interlayer remitting stress in diamond films deposited on copper substrate by hot filaments chemical vapor deposition [J]. Surface Technology,2013,42(5):19−23. doi: 10.16490/j.cnki.issn.1001-3660.2013.05.003
    CHANDRAN M, HOFFMAN A. Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications [J]. Journal of Physics D: Applied Physics,2016,49(21):213002. doi: 10.1088/0022-3727/49/21/213002
    WANG G, LU X, DING M, et al. Diamond coatin-gs deposited on cemented carbide substrates with SiC as interlayers: preparation and erosion resistance tests [J]. Diamond & Related Materials,2016,73:105-113.
    WANG T, ZHANG S Q, JIANG C L, et al. TiB2 barrier interlayer approach for HFCVD diamond deposition onto cemented carbide tools [J]. Diamond & Related Materials,2018,83:126-133.
    WEI Q P, YU Z M, MA L, et al. The effects of temperature on nanocrystalline diamond films deposited on WC–13 wt.% Co substrate with W–C gradient layer [J]. Applied Surface Science,2009,256(5):1322-1328. doi: 10.1016/j.apsusc.2009.06.091
    BASTURK S, SENBABAOGLU F, ISLAM C, et al. Titanium machining with new plasma boronized cutting tools [J]. CIRP Annals - Manufacturing Technology,2010,59(1):101-104. doi: 10.1016/j.cirp.2010.03.095
    WANG X, SHEN X, YANG G, et al. Evaluation of boron-doped-microcrystalline/nanocrystalline diamond composite coatings in drilling of CFRP [J]. Surface & Coatings Technology,2017,330:149-162.
    WANG X, SHEN X, SUN F, et al. Influence of boron doping level on the basic mechanical properties and erosion behavior of boron-doped micro-crystalline diamond (BDMCD) film [J]. Diamond and Related Materials,2017,73:218-231. doi: 10.1016/j.diamond.2016.09.025
    许青波, 王传新, 王涛, 等. 硼掺杂金刚石薄膜的制备和性能研究 [J]. 金刚石与磨料磨具工程,2018,38(3):11-15, 20. doi: 10.13394/j.cnki.jgszz.2018.3.0003

    XU Qingbo, WANG Chuanxin, WANG Tao, et al. Preparation and properties of boron doped diamond films [J]. Diamond & Abrasives Engineering,2018,38(3):11-15, 20. doi: 10.13394/j.cnki.jgszz.2018.3.0003
    王文君, 汪建华, 王均涛, 等. 硼源浓度对钛基掺硼金刚石薄膜生长的影响 [J]. 表面技术,2011,40(2):4-7. doi: 10.3969/j.issn.1001-3660.2011.02.002

    WANG Wenjun, WANG Jianhua, WANG Juntao, et al. Influence of boron concentration on the growth of boron-doped diamond film on Ti substrate [J]. Surface Technology,2011,40(2):4-7. doi: 10.3969/j.issn.1001-3660.2011.02.002
    WANG L, SHEN B, SUN F, et al. Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC–Co substrate [J]. Surface and Interface Analysis,2015,47(5):572-586. doi: 10.1002/sia.5748
    WANG L, LIU J, TANG T, et al. The abrasion resistance and adhesion of HFCVD boron and silicon-doped diamond films on WC–Co drawing dies [J]. Surface Review and Letters,2016,24(7):1750090.
    LEI X L, WANG L, SHEN B, et al. Effect of boron-doped diamond interlayer on cutting performance of diamond coated micro drills for graphite machining [J]. Materials (Basel),2013,6(8):3128-3138. doi: 10.3390/ma6083128
    RAMASUBRAMANIAN K, ARUNACHALAM N, RAMACHANDRA RAO M S. Investigation on tribological behaviour of boron doped diamond coated cemented tungsten carbide for cutting tool applications [J]. Surface and Coatings Technology,2017,332:332-340. doi: 10.1016/j.surfcoat.2017.06.090
    KALSS W, BOHR S, HAUBNER R, et al. Influence of boron on diamond growth on WC-Co hardmetals [J]. International Journal of Refractory Metals and Hard Materials,1996,14(1/2/3):137-144. doi: 10.1016/0263-4368(96)83427-5
    MAY P W, LUDLOW W J, HANNAWAY M, et al. Raman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films [J]. Chemical Physics Letters,2007,446(1/2/3):103-108. doi: 10.1016/j.cplett.2007.08.018
    MORTET V, GREGORA I, TAYLOR A, et al. New perspectives for heavily boron-doped diamond Raman spectrum analysis [J]. Carbon, 2020, 168: 319−327.
    MURET M. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy [J]. Diamond and Related Materials,2004,13(2):282-286. doi: 10.1016/j.diamond.2003.10.051
    MAY P W, LUDLOW W J, HANNAWAY M, et al. Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films [J]. Diamond & Related Materials,2008,17(2):105-117.
    RALCHENKO V G, SMOLIN A A, PEREVERZEV V G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diamond & Related Materials,1995,4(5/6):754-758.
    BUIJNSTERS J G, SHANKAR P, FLEISCHER W, et al. CVD diamond deposition on steel using arc-plated chromium nitride interlayers [J]. Diamond and Related Materials,2002,11(3/4/5/6):536-544. doi: 10.1016/S0925-9635(01)00628-8
    LEI X L, SHEN B, CHEN S L, et al. Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication [J]. Tribology International,2014,69:118-127. doi: 10.1016/j.triboint.2013.09.012
    王志伟, 邹芹, 李艳国, 等. 硼及其协同掺杂金刚石薄膜的研究 [J]. 金刚石与磨料磨具工程,2019,39(4):1-8. doi: 10.13394/j.cnki.jgszz.2019.4.0001

    WANG Zhiwei, ZOU Qin, LI Yanguo, et al. Study on boron and its co-doped diamond films [J]. Diamond & Abrasives Engineering,2019,39(4):1-8. doi: 10.13394/j.cnki.jgszz.2019.4.0001
    VIDAKIS N, ANTONIADIS A, BILALIS N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. Journal of Materials Processing Technology,2003,143/144(1):481-485.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (71) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint