Citation: | JIANG Junqiang, LIANG Guiqiang, SUN Lihui, DONG Zhongqi. Influence mechanism of machining parameters on surface quality and subsurface damage of single crystal γ-TiAl[J]. Diamond & Abrasives Engineering, 2022, 42(4): 457-466. doi: 10.13394/j.cnki.jgszz.2022.0001 |
[1] |
曹卉. 单晶γ-TiAl合金的变形与断裂机制研究 [D]. 兰州: 兰州理工大学, 2020.
CAO Hui. Deformation and fracture mechanism of single crystal γ-TiAl [D]. Lanzhou: Lanzhou University of Technology, 2020.
|
[2] |
HAN X, XU D D, AXINTE D, et al. On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining [J]. Journal of Materials Processing Technology,2021,288:116875. doi: 10.1016/j.jmatprotec.2020.116875
|
[3] |
李颂华, 韩光田, 孙健, 等. 金刚石砂轮磨削轴承用ZrO2陶瓷表面质量研究 [J]. 金刚石与磨料磨具工程,2019,39(6):75-81.
LI Songhua, HAN Guangtian, SUN Jian, et al. Study on surface quality of zirconia ceramics used for bearing ground by diamond grinding wheel [J]. Diamond & Abrasives Engineering,2019,39(6):75-81.
|
[4] |
HAN J J, HAO X Q, LI L, et al. Investigation on surface quality and burr generation of high aspect ratio (HAR) micro-milled grooves [J]. Journal of Manufacturing Processes,2020,52:35-43. doi: 10.1016/j.jmapro.2020.01.041
|
[5] |
ANWAR S, AHMED N, PERVAIZ S, et al. On the turning of electron beam melted gamma-TiAl with coated and uncoated tools: A machinability analysis [J]. Journal of Materials Processing Technology,2020,282:116664. doi: 10.1016/j.jmatprotec.2020.116664
|
[6] |
CHENG Y, YUAN Q, ZHANG B, et al. Study on turning force of γ-TiAl alloy [J]. International Journal of Advanced Manufacturing Technology,2019,105(5/6):2393-2402.
|
[7] |
FAN Y H, WANG W Y, HAO Z P, et al. Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of Ni-based alloy [J]. Journal of Alloys and Compounds,2020,819:153331. doi: 10.1016/j.jallcom.2019.153331
|
[8] |
夏斯伟, 周海, 徐晓明, 等. 单晶材料纳米加工的分子动力学模拟研究进展 [J]. 金刚石与磨料磨具工程,2018,38(5):78-86. doi: 10.13394/j.cnki.jgszz.2018.5.0015
XIA Siwei, ZHOU Hai, XU Xiaoming, et al. Advances in molecular dynamics simulation of nano-manufacturing of monocrystalline materials [J]. Diamond & Abrasives Engineering,2018,38(5):78-86. doi: 10.13394/j.cnki.jgszz.2018.5.0015
|
[9] |
LIU H T, ZHU X F, SUN Y Z, et al. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals [J]. Applied Surface Science,2017,422(15):413-419.
|
[10] |
GUO Y B, LIANG Y C. Atomistic simulation of thermal effects and defect structures during nanomachining of copper [J]. Transactions of Nonferrous Metals Society of China,2012,22(11):2762-2770. doi: 10.1016/S1003-6326(11)61530-6
|
[11] |
SHIMADA S, IKAWA N, TANAKA H, et al. Structure of micromachined surface simulated by molecular dynamics analysis [J]. CIRP Annals-Manufacturing Technology,1994,43(1):51-54. doi: 10.1016/S0007-8506(07)62162-3
|
[12] |
TO S, LEE W B, CHAN C Y. Ultraprecision diamond turning of aluminium single crystals [J]. Journal of Materials Processing Technology,1997,63(1/2/3):157-162. doi: 10.1016/S0924-0136(96)02617-9
|
[13] |
REN J, LIANG G X, MING L V. Effect of different crystal orientations on the surface integrity during nanogrinding of monocrystalline nickel [J]. Modelling and Simulation in Materials Science and Engineering,2019,27(7):103855.
|
[14] |
SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters [J]. Journal of Chemical Physics,1982,76(1):637-649. doi: 10.1063/1.442716
|
[15] |
DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters,1983,50(17):1285-1288. doi: 10.1103/PhysRevLett.50.1285
|
[16] |
DANDEKAR C R, SHIN Y C. Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics [J]. Composites Part A: Applied Science & Manufacturing,2011,42(4):355-363.
|
[17] |
TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B,1989,39(8):5566-5568. doi: 10.1103/PhysRevB.39.5566
|
[18] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
|
[19] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering,2010,18(1):2154-2162.
|
[20] |
FANG Q H, WANG Q, LI J, et al. Mechanisms of subsurface damage and material removal during high speed grinding processes in Ni/Cu multilayers using a molecular dynamics study [J]. RSC Advances,2017,7(67):42047-42055. doi: 10.1039/C7RA06975H
|
[21] |
LI J, FANG Q H, LIU Y W, et al. Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics [J]. The International Journal of Advanced Manufacturing Technology,2015,77(5/6/7/8):1057-1070. doi: 10.1007/s00170-014-6536-6
|
[22] |
TONIETTO L, GONZAGA L, VERONEZ M R, et al. New method for evaluating surface roughness parameters acquired by laser scanning [J]. Scientific Reports,2019,9(1):15038. doi: 10.1038/s41598-019-51545-7
|
[23] |
仇健, 巩亚东, 刘昌付, 等. 几种因素对快速点磨削表面粗糙度的影响 [J]. 金刚石与磨料磨具工程,2009,4:39-43. doi: 10.3969/j.issn.1006-852X.2009.04.008
QIU Jian, GONG Yadong, LIU Changfu, et al. Effect of several factors on quick-point grinding surface roughness [J]. Diamond & Abrasives Engineering,2009,4:39-43. doi: 10.3969/j.issn.1006-852X.2009.04.008
|
[24] |
LI Y, SHUAI M B, ZHANG J J, et al. Molecular dynamics investigation of residual stress and surface roughness of cerium under diamond cutting [J]. Micromachines,2018,9:386. doi: 10.3390/mi9080386
|
[25] |
AL-AHMARI A, ASHFAQ M, ALFAIFY A, et al. Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method [J]. Journal of Mechanical Science and Technology,2016,30(1):345-352. doi: 10.1007/s12206-015-1239-y
|
[26] |
CAI M B, LI X P, RAHMAN M. Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation [J]. International Journal of Machine Tools & Manufacture,2007,47(1):75-80.
|
[27] |
HOSSEINI S V, VAHDATI M. Modeling the effect of tool edge radius on contact zone in nanomachining [J]. Computational Materials Science,2012,65:29-36. doi: 10.1016/j.commatsci.2012.06.037
|
[28] |
ZHU Z X, PENG B, FENG R C, et al. Molecular dynamics simulation of chip formation mechanism in single-crystal nickel nanomachining [J]. Science China Technological Sciences,2019,62(11):48-61.
|
[29] |
王全龙. 晶体铜纳米切削加工亚表层晶体结构及缺陷演变机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016.
WANG Quanlong. Research on the evolution mechanism of subsurface defect and crystal structure of crystal copper in nanometric cutting process [D]. Harbin: Harbin Institute Technology, 2016.
|
[30] |
冯瑞成, 乔海洋, 朱宗孝, 等. 单晶γ-TiAl合金纳米切削过程的分子动力学模拟 [J]. 稀有金属材料与工程,2019,48(5):1559-1566.
FENG Ruicheng, QIAO Haiyang, ZHU Zongxiao, et al. Molecular dynamics simulations of single crystal γ-TiAl alloy in nanometric cutting process [J]. Rare Metal Materials and Engineering,2019,48(5):1559-1566.
|
[31] |
REN J, HAO M R, LV M, et al. Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel [J]. Applied Surface Science,2018,455(15):629-634.
|