CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, HUANG Han. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond &Abrasives Engineering, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009
Citation: HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, HUANG Han. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond &Abrasives Engineering, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009

Nanoscale removal mechanisms in abrasive machining of brittle solids

doi: 10.13394/j.cnki.jgszz.2021.3009
  • Received Date: 2022-04-23
  • Accepted Date: 2022-05-20
  • Rev Recd Date: 2022-05-14
  • Available Online: 2022-07-13
  • Brittle solids with dominant covalent-ionic bonding, including single crystals, polycrystals, and optical glass, are core materials for modern microelectronic and optoelectronic devices that are widely used in energy, communication, transportation, and medicine sectors. In high performance device applications, those brittle materials must be machined into parts that often have an extremely smooth surface and a damage-free subsurface with sub-micron precision. Optimisation of an abrasive machining process for the brittle solids can significantly enhance production efficiency and reduce manufacturing cost, as well as prolong device life. The development of high efficiency and low damage ultraprecision shaping technologies for this class of solids requires an in-depth understanding of their deformation and removal mechanisms at nanoscale. In this work, the fundamental mechanisms of deformation and removal of brittle materials involved in individual or cumulative contacts with blunt and sharp grits are analysed, using the scratch-related micromechanics as the theoretical basis. Essentials of brittle-to-ductile transitions in abrasive machining are outlined. Influence of the diversity in material microstructures in determining local deformation and subsequent removal is highlighted. Practical requirements are suggested for further advancing ultraprecision abrasive machining of those brittle solids.


  • loading
  • [1]
    HUANG H, LI X, MU D, et al. Science and art of ductile grinding of brittle solids [J]. International Journal of Machine Tools and Manufacture,2020,161:103675. doi: 10.1016/j.ijmachtools.2020.103675
    LAWN B R, BORRERO-LOPEZ O, HUANG H, et al. Micromechanics of machining and wear in hard and brittle materials [J]. Journal of the American Ceramic Society,2020,104(1):5-22. doi: 10.1111/jace.17502
    WU Y, MU D, HUANG H. Deformation and removal of semiconductor and laser single crystals at extremely small scales [J]. International Journal of Extreme Manufacturing,2020,2(2):12006. doi: 10.1088/2631-7990/ab7a2a
    SREEJITH P S, NGOI B K A. Material removal mechanisms in precision machining of new materials [J]. International Journal of Machine Tools and Manufacture,2001,41(12):1831-1843. doi: 10.1016/S0890-6955(01)00014-1
    PEI Z J, FISHER G R, LIU J. Grinding of silicon wafers: A review from historical perspectives [J]. International Journal of Machine Tools and Manufacture,2008,48(12/13):1297-1307. doi: 10.1016/j.ijmachtools.2008.05.009
    FENG P, WANG J, ZHANG J, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review [J]. Ceramics International,2017,44:1227-1239. doi: 10.1016/j.ceramint.2017.10.050
    YAN J, ZHANG Z, KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide [J]. International Journal of Machine Tools and Manufacture,2009,49(5):366-374. doi: 10.1016/j.ijmachtools.2008.12.007
    MUKAIDA M, YAN J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo [J]. International Journal of Machine Tools and Manufacture,2017,115:2-14. doi: 10.1016/j.ijmachtools.2016.11.004
    LI C, LI X, WU Y, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals [J]. International Journal of Machine Tools and Manufacture,2019,143:23-37. doi: 10.1016/j.ijmachtools.2019.05.003
    LI C, WU Y, LI X, et al. Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals [J]. Journal of Materials Processing Technology,2020,279:116577. doi: 10.1016/j.jmatprotec.2019.116577
    ZHANG C, RENTSCH R, BRINKSMEIER E. Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: A brief review and outlook [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):881-890. doi: 10.1016/j.ijmachtools.2004.10.018
    LAWN B R. Partial cone crack formation in a brittle material loaded with a sliding spherical indenter [J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1967,299(1458):307-316. doi: 10.1098/rspa.1967.0138
    LAWN B R, COOK R F. Probing material properties with sharp indenters: A retrospective [J]. Journal of Materials Science,2012,47:1-22. doi: 10.1007/s10853-011-5865-1
    LAWN B, WILSHAW R. Indentation fracture: Principles and applications [J]. Journal of Materials Science,1975,10:1049-1081. doi: 10.1007/BF00823224
    LAWN B R, PADTURE N P, CAIT H, et al. Making ceramics “ductile” [J]. Science,1994,263(5150):1114-1116. doi: 10.1126/science.263.5150.1114
    OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. Journal of Materials Research,2004,19(1):3-20. doi: 10.1557/jmr.2004.19.1.3
    JUNG Y G, PAJARES A, BANERGEE R, et al. Strength of silicon, sapphire and glass in the subthreshold flaw region [J]. Acta Materialia,2004,52(12):3459-3466. doi: 10.1016/j.actamat.2004.03.043
    XU H H, JAHANMIR S. Microfracture and material removal in scratching of alumina [J]. Journal of Materials Science,1995,30(9):2235-2247. doi: 10.1007/BF01184566
    BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: A new technology for machining brittle materials [J]. Journal of Engineering for Industry,1991,113(2):184-189. doi: 10.1115/1.2899676
    ZHONG Z W. Ductile or partial ductile mode machining of brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2003,21:579-585. doi: 10.1007/s00170-002-1364-5
    NEO W K, KUMAR A S, RAHMAN M. A review on the current research trends in ductile regime machining [J]. The International Journal of Advanced Manufacturing Technology,2012,63:465-480. doi: 10.1007/s00170-012-3949-y
    WU H, MELKOTE S N. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: Application to wire sawing of silicon wafers [J]. Journal of Engineering Materials and Technology,2012,134(4):041011. doi: 10.1115/1.4006177
    BEAUCAMP A, SIMON P, CHARLTON P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics [J]. International Journal of Machine Tools and Manufacture,2017,115:29-37. doi: 10.1016/j.ijmachtools.2016.11.006
    NAKASUJI T, KODERA S, HARA S, et al. Diamond turning of brittle materials for optical components [J]. CIRP Annals-Manufacturing Technology,1990,39:89-92. doi: 10.1016/S0007-8506(07)61009-9
    KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (A review) [J]. Journal of Superhard Materials,2013,35:259-276. doi: 10.3103/S1063457613050018
    HUANG H, LAWN B R, COOK R F, et al. Critique of materials‐based models of ductile machining in brittle solids [J]. Journal of the American Ceramic Society,2020,103:6096-6100. doi: 10.1111/jace.17344
    MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives [M]. Norwalk: Industrial Press Inc. , 2008.
    HUANG H, LIU Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding [J]. International Journal of Machine Tools and Manufacture,2003,43:811-823. doi: 10.1016/S0890-6955(03)00050-6
    LI C, ZHANG F, MENG B, et al. Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing [J]. Materials & Design,2017,125:180-188. doi: 10.1016/j.matdes.2017.04.018
    LI C, ZHANG F, PIAO Y. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal [J]. Ceramics International,2019,45(12):15015-15024. doi: 10.1016/j.ceramint.2019.04.238
    KOSMAC T, OBLAK C, JEVNIKAR P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic [J]. Dental Materials,1999,15(6):426-433. doi: 10.1016/S0109-5641(99)00070-6
    WU H, ROBERTS S G, DERBY B. Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics [J]. Acta Materialia,2001,49(3):507-517. doi: 10.1016/S1359-6454(00)00333-5
    COLILLA M, MANZANO M, VALLET-REGI M. Recent advances in ceramic implants as drug delivery systems for biomedical applications [J]. International Journal of Nanomedicine,2008,3(4):403-414. doi: 10.2147/IJN.S3548
    YIN L, HUANG H. Ceramic response to high speed grinding [J]. Machining Science and Technology,2004,8(1):21-37. doi: 10.1081/MST-120034240
    BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures [J]. Materials Science and Engineering: A,2010,527(6):1314-1338. doi: 10.1016/j.msea.2009.09.064
    XU H H, WEI L, JAHANMIR S. Influence of grain size on the grinding response of alumina [J]. Journal of the American Ceramic Society,1996,79:1307-1313. doi: 10.1111/j.1151-2916.1996.tb08589.x
    XU H H, PADTURE N P, JAHANMIR S. Effect of microstructure on material‐removal mechanisms and damage tolerance in abrasive machining of silicon carbide [J]. Journal of the American Ceramic Society,1995,78(9):2443-2448. doi: 10.1111/j.1151-2916.1995.tb08683.x
    XU H H K, JAHANMIR S, IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina [J]. Machining Science and Technology,1997,1(1):49-66. doi: 10.1080/10940349708945637
    XU H H, WEI L, JAHANMIR S. Grinding force and microcrack density in abrasive machining of silicon nitride [J]. Journal of Materials Research,1995,10(12):3204-3209. doi: 10.1557/JMR.1995.3204
    CAI L, GUO X, GAO S, et al. Material removal mechanism and deformation characteristics of AlN ceramics under nanoscratching [J]. Ceramics International,2019,45(16):20545-20554. doi: 10.1016/j.ceramint.2019.07.034
    YIN L, HUANG H, RAMESH K, et al. High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):897-907. doi: 10.1016/j.ijmachtools.2004.10.016
    COOK R F, PHARR G M. Direct observation and analysis of indentation cracking in glasses and ceramics [J]. Journal of the American Ceramic Society,1990,73(4):787-817. doi: 10.1111/j.1151-2916.1990.tb05119.x
    BURGHARD Z, ZIMMERMANN A, RODEL J, et al. Crack opening profiles of indentation cracks in normal and anomalous glasses [J]. Acta Materialia,2004,52(2):293-297. doi: 10.1016/j.actamat.2003.09.014
    GU W, YAO Z, LIANG X. Material removal of optical glass BK7 during single and double scratch tests [J]. Wear,2011,270(3):241-246. doi: DOI:10.1016/j.wear.2010.10.064
    LEE K, MARIMUTHU K P, KIM C L, et al. Scratch-tip-size effect and change of friction coefficient in nano/micro scratch tests using XFEM [J]. Tribology International,2018,120:398-410. doi: 10.1016/j.triboint.2018.01.003
    LI X, HUANG S, WU Y, et al. Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates [J]. Precision Engineering,2019,60:291-298. doi: 10.1016/j.precisioneng.2019.08.016
    WANG Y, LI X, WU Y, et al. The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching [J]. International Journal of Mechanical Sciences,2021,204:106562. doi: 10.1016/j.ijmecsci.2021.106562
    GAO S, WU Y, KANG R, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing,2018,79:165-170. doi: 10.1016/j.mssp.2017.12.017
    ZHANG Z, WU Y, HUANG H. New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding [J]. Scripta Materialia,2010,63(6):621-624. doi: 10.1016/j.scriptamat.2010.05.043
    IRWAN R, HUANG H, ZHENG H Y, et al. Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals [J]. Materials Science and Engineering: A,2013,559:480-485. doi: 10.1016/j.msea.2012.08.129
    MALKIN S, HWANG T W. Grinding mechanisms for ceramics [J]. CIRP Annals-Manufacturing Technology,1996,45(2):569-580. doi: 10.1016/S0007-8506(07)60511-3
    ZHANG B, HOWES T D. Material-removal mechanisms in grinding ceramics [J]. CIRP Annals Manufacturing Technology,1994,43(1):305-308. doi: 10.1016/S0007-8506(07)62219-7
    ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics [J]. International Journal of Machine Tools and Manufacture,2015,90:16-28. doi: 10.1016/j.ijmachtools.2014.12.002
    ZARUDI I, ZHANG L. On the limit of surface integrity of alumina by ductile-mode grinding [J]. Journal of Engineering Materials and Technology,2000,122(1):129-134. doi: 10.1115/1.482776
    COOK R F. Fracture mechanics of sharp scratch strength of polycrystalline alumina [J]. Journal of the American Ceramic Society,2017,100(3):1146-1160. doi: 10.1111/jace.14634
    YANG Z, ZHU L, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding [J]. Ceramics International,2019,45(7):8873-8889. doi: 10.1016/j.ceramint.2019.01.216
    REKOW E, SILVA N, COELHO P, et al. Performance of dental ceramics: Challenges for improvements [J]. Journal of Dental Research,2011,90(8):937-952. doi: 10.1177/0022034510391795
    YIN L, JAHANMIR S, IVES L K. Abrasive machining of porcelain and zirconia with a dental handpiece [J]. Wear,2003,255:975-989. doi: 10.1016/S0043-1648(03)00195-9
    SHIH A J, SCATTERGOOD R O, CURRY A C, et al. Cost-effective grinding of zirconia using the dense vitreous bond silicon carbide wheel [J]. Journal of Manufacturing Science & Engineering,2003,125(2):297-303. doi: DOI:10.1115/1.1559167
    ANAND P S P, ARUNACHALAM N, VIJAYARAGHAVAN L. Investigation on grindability of medical implant material using a silicon carbide wheel with different cooling conditions [J]. Procedia Manufacturing,2017,10:417-428. doi: 10.1016/j.promfg.2017.07.016
    LEE S K, TANDON R, READEY M J, et al. Scratch damage in zirconia ceramics [J]. Journal of the American Ceramic Society,2000,83(6):1428-1432. doi: 10.1111/j.1151-2916.2000.tb01406.x
    DAI J, SU H, YU T, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain [J]. Precision Engineering,2018,51:271-279. doi: 10.1016/j.precisioneng.2017.08.019
    LI Z, ZHANG F, LUO X. Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding [J]. Applied Surface Science,2018,448:341-350. doi: 10.1016/j.apsusc.2018.04.038
    BORRERO-LOPEZ O, ORTIZ A L, GUIBERTEAU F, et al. Improved sliding‐wear resistance in in situ‐toughened silicon carbide [J]. Journal of the American Ceramic Society,2005,88(12):3531-3534. doi: 10.1111/j.1551-2916.2005.00628.x
    PADTURE N P, EVANS C J, XU H H, et al. Enhanced machinability of silicon carbide via microstructural design [J]. Journal of the American Ceramic Society,1995,78(1):215-217. doi: 10.1111/j.1151-2916.1995.tb08386.x
    YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture,2004,44(6):607-615. doi: 10.1016/j.ijmachtools.2003.12.006
    AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding [J]. International Journal of Machine Tools and Manufacture,2008,48(6):698-710. doi: 10.1016/j.ijmachtools.2007.10.013
    LEE S K, LEE K S, LAWN B R, et al. Effect of starting powder on damage resistance of silicon nitrides [J]. Journal of the American Ceramic Society,1998,81(8):2061-2070. doi: 10.1111/j.1151-2916.1998.tb02588.x
    HUANG H, YIN L, ZHOU L. High speed grinding of silicon nitride with resin bond diamond wheels [J]. Journal of Materials Processing Technology,2003,141:329-336. doi: 10.1016/S0924-0136(03)00284-X
    AZARHOUSHANG B, SOLTANI B, ZAHEDI A. Laser-assisted grinding of silicon nitride by picosecond laser [J]. The International Journal of Advanced Manufacturing Technology,2017,93(3/4):2517-2529. doi: 10.1007/s00170-017-0440-9
    HUANG S, LI X, YU B, et al. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping [J]. Journal of Materials Processing Technology,2020,277:116444. doi: 10.1016/j.jmatprotec.2019.116444
    WU Y Q, HUANG H, ZOU J, et al. Nanoscratch-induced phase transformation of monocrystalline Si [J]. Scripta Materialia,2010,63(8):847-850. doi: 10.1016/j.scriptamat.2010.06.034
    MYLVAGANAM K, ZHANG L C. Nanotwinning in monocrystalline silicon upon nanoscratching [J]. Scripta Materialia,2011,65(3):214-216. doi: 10.1016/j.scriptamat.2011.04.012
    LIU H, XIE W, SUN Y, et al. Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon [J]. The International Journal of Advanced Manufacturing Technology,2018,95:317-326. doi: 10.1007/s00170-017-1108-1
    LI C, PIAO Y, MENG B, et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture,2022,172:103827. doi: 10.1016/j.ijmachtools.2021.103827
    WANG J, GUO B, ZHAO Q, et al. Dependence of material removal on crystal orientation of sapphire under cross scratching [J]. Journal of the European Ceramic Society,2017,37(6):2465-2472. doi: 10.1016/j.jeurceramsoc.2017.01.032
    DEMIR E, MERCAN C. A physics-based single crystal plasticity model for crystal orientation and length scale dependence of machining response [J]. International Journal of Machine Tools and Manufacture,2018,134:25-41. doi: 10.1016/j.ijmachtools.2018.06.004
    LUO Q, LU J, XU X. Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools [J]. Tribology International,2016,104:191-203. doi: 10.1016/j.triboint.2016.09.003
    HERMAN D, KRZOS J. Influence of vitrified bond structure on radial wear of CBN grinding wheels [J]. Journal of Materials Processing Technology,2009,209:5377-5386. doi: 10.1016/j.jmatprotec.2009.03.013
    ZHOU Y, ATWOOD M, GOLINI D, et al. Wear and self-sharpening of vitrified bond diamond wheels during sapphire grinding [J]. Wear,1998,219(1):42-45. doi: 10.1016/S0043-1648(98)00230-0
    HUANG H, CHEN W, YIN L, et al. Micro/meso ultra precision grinding of fibre optic connectors [J]. Precision Engineering,2004,28(1):95-105. doi: 10.1016/j.precisioneng.2003.08.001
    AXINTE D, BUTLER-SMITH P, AKGUN C, et al. On the influence of single grit micro-geometry on grinding behavior of ductile and brittle materials [J]. International Journal of Machine Tools and Manufacture,2013,74:12-18. doi: 10.1016/j.ijmachtools.2013.06.002
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (519) PDF downloads(188) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint