CN 41-1243/TG ISSN 1006-852X
LI Shiyu, AN Kang, SHAO Siwu, HUANG Yabo, ZHANG Jianjun, ZHENG Yuting, CHEN Liangxian, WEI Junjun, LIU Jinlong, LI Chengming. Laser planarization efficiency and roughness of CVD diamond film[J]. Diamond & Abrasives Engineering, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104
Citation: LI Shiyu, AN Kang, SHAO Siwu, HUANG Yabo, ZHANG Jianjun, ZHENG Yuting, CHEN Liangxian, WEI Junjun, LIU Jinlong, LI Chengming. Laser planarization efficiency and roughness of CVD diamond film[J]. Diamond & Abrasives Engineering, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104

Laser planarization efficiency and roughness of CVD diamond film

doi: 10.13394/j.cnki.jgszz.2021.0104
More Information
  • Received Date: 2021-07-14
  • Accepted Date: 2021-10-13
  • Rev Recd Date: 2021-08-26
  • Available Online: 2022-03-17
  • The orthogonal experiment of laser planarization of CVD polycrystalline diamond film was carried out, and the morphology was analyzed by using scanning electron microscope (SEM). The surface roughness Ra, the surface roughness Sa and the taper of kerf were measured by confocal laser scanning microscope. The influence of laser parameters on cutting quality was analyzed. The results show that the factors affecting kerf taper are pulse width, pulse frequency, feed speed and laser current in turn, and the factors affecting line roughness are feed speed, laser current, pulse frequency and pulse width in turn. After optimization by orthogonal test, the best groove surface morphology can be obtained with laser current of 64 A, pulse width of 400 μs, pulse frequency of 275 Hz and feed speed of 100 mm/min. Using the optimized parameters, the surface roughness Sa was measured to be 11.7 μm. When the incident angle increased to 75°, the surface roughness Sa decreased to 1.9 μm, and the actual removal efficiency reached 1.1 mm3/min.

     

  • [1]
    AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films [J]. Ceramics International,2018,44(15):17845-17851. doi: 10.1016/j.ceramint.2018.06.253
    [2]
    刘金龙, 安康, 陈良贤, 等. CVD金刚石自支撑膜的研究进展 [J]. 表面技术,2018,47(4):1-10.

    LIU Jinlong, AN Kang, CHEN Liangxian, et al. Research progress of freestanding CVD diamond films [J]. Surface Technology,2018,47(4):1-10.
    [3]
    GRUEN D M, BUCKLEY-GOLDER I. Diamond films: Recent developments [J]. MRS Bulletin,2013,23(9):16-21.
    [4]
    SCHWANDER M, PARTES K. A review of diamond synthesis by CVD processes [J]. Diamond and Related Materials,2011,20(9):1287-1301. doi: 10.1016/j.diamond.2011.08.005
    [5]
    KHAN B A, LITVINYUK I V, RYBACHUK M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges [J]. Carbon,2021,179:209-226. doi: 10.1016/j.carbon.2021.04.025
    [6]
    ZHENG Y T, LI C M, LIU J L, et al. Diamond with nitrogen: States, control, and applications [J]. Functional Diamond,2021,1(1):63-82. doi: 10.1080/26941112.2021.1877021
    [7]
    SAKAUCHI K, NAGAI M, TABAKOYA T, et al. Mechanical damage-free surface planarization of single-crystal diamond based on carbon solid solution into nickel [J]. Diamond and Related Materials,2021,116:1-6.
    [8]
    MAN W D, WANG J H, WANG C X, et al. Planarizing CVD diamond films by using hydrogen plasma etching enhanced carbon diffusion process [J]. Diamond and Related Materials,2007,16(8):1455-1458. doi: 10.1016/j.diamond.2006.11.102
    [9]
    ILIAS S, SENE G, MOLLER P, et al. Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle [J]. Diamond and Related Materials,1996,5(6/7/8):835-839. doi: 10.1016/0925-9635(95)00412-2
    [10]
    NORIKAZU S, MISONO H, SHAMOTO E, et al. Material removal efficiency improvement by orientation control of CMP pad surface asperities [J]. Precision Engineering,2020,62:83-88. doi: 10.1016/j.precisioneng.2019.11.008
    [11]
    徐峰. CVD金刚石厚膜的加工技术研究 [D]. 南京: 南京航空航天大学, 2002.

    XU Feng. Study on laser processing and machining of CVD diamond thick-film [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002.
    [12]
    季国顺, 张永康. 激光抛光化学气相沉积金刚石膜 [J]. 激光技术,2003,27(2):106-109. doi: 10.3969/j.issn.1001-3806.2003.02.005

    JI Guoshun, ZHANG Yongkang. Laser polishing of chemically vapor-deposited diamond films [J]. Laser Technology,2003,27(2):106-109. doi: 10.3969/j.issn.1001-3806.2003.02.005
    [13]
    安康. 等离子体喷射金刚石膜板力学性能基础研 [D]. 北京: 北京科技大学, 2019.

    AN Kang. Basic research on mechanical properties of thick diamond film fabricated by plasma jet CVD [D]. Beijing: University of Science and Technology Beijing, 2019.
    [14]
    AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD [J]. Ceramics International,2018, 44(11):13402-13408.
    [15]
    刘立君, 王晓陆, 沈秀强, 等. 耐热钢表面激光熔覆陶瓷工艺 [J]. 哈尔滨理工大学学报,2020,25(1):7.

    Liu Lijun, Wang Xiaolu, Shen Xiuqiang, et al. Technology of laser cladding ceramics on heat resistant steel surface [J]. Journal of Harbin University of Science and Technology,2020,25(1):7.
    [16]
    LI C M, ZHU R H, LIU J L, et al. Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD [J]. Diamond and Related Materials,2013,39(10):47-52.
    [17]
    QI Z N, ZHENG Y T, WEI J J, et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement [J]. Applied Thermal Engineering,2020,177:1-13.
    [18]
    TSAI H Y, TING C J, CHOU C P. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition [J]. Diamond and Related Materials,2007,16(2):253-261. doi: 10.1016/j.diamond.2006.06.007
  • Relative Articles

    [1]LI Jiao, ZHANG Xiaoqiu, WANG Ziguang, ZHANG Xin, ZHANG Yu. Mechanical lapping and polishing process of polycrystalline diamond wafers[J]. Diamond & Abrasives Engineering, 2025, 45(1): 86-92. doi: 10.13394/j.cnki.jgszz.2024.0017
    [2]XU Yuchun, ZHU Jianhui, SHI Chaoyu, WANG Ningchang, ZHAO Yanjun, ZHANG Gaoliang, QIAO Shuai, GU Chunqing. Roughness prediction of Al2O3-based ceramic insulation coating on bearing surface[J]. Diamond & Abrasives Engineering, 2024, 44(3): 346-353. doi: 10.13394/j.cnki.jgszz.2023-0118
    [3]Prediction of grinding surface roughness of Al2O3-based insulating coating on bearing surface considering the change of grinding wheel surface morphology[J]. Diamond & Abrasives Engineering. doi: 10.13394/j.cnki.jgszz.2023.0118
    [4]LIU Jianqi, KANG Renke, TIAN Junchao, DONG Zhigang, BAO Yan. The influence of precision polishing parameters on surface roughness of resin-rich layer on antenna reflective surface[J]. Diamond & Abrasives Engineering, 2023, 43(2): 250-256. doi: 10.13394/j.cnki.jgszz.2022.0044
    [5]YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160
    [6]WANG He, WEN Kaixiang, YAN Guangyu, WANG Yanxiang, JIN Yifan, SU Peichen. Effect of Si3N4 substrate surface roughness on the wear resistance of diamond film prepared by HFCVD[J]. Diamond & Abrasives Engineering, 2023, 43(5): 604-611. doi: 10.13394/j.cnki.jgszz.2022.0184
    [7]XU Yuchun, ZHU Jianhui, WANG Ningchang, SHI Chaoyu, ZHAO Yanjun, SHAO Junyong, XU Shuai. Analysis on the lapping uniformity of MPCVD polycrystalline diamond wafer[J]. Diamond & Abrasives Engineering, 2022, 42(6): 705-712. doi: 10.13394/j.cnki.jgszz.2022.0162
    [8]HE Zhongwen, MA Zhibin. Preparation of polycrystalline diamond films by MPCVD at high plasma power density[J]. Diamond & Abrasives Engineering, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
    [9]ZHU Haifeng, WANG Yankun, DING Wenming, LIANG Linda. Preparation of diamond films by low power MPCVD[J]. Diamond & Abrasives Engineering, 2021, 41(2): 39-45. doi: 10.13394/j.cnki.jgszz.2021.2.0007
    [10]HUANG Yihao, MA Zhibin. Effect of tungsten surface laser treatment on adhesion of diamond film[J]. Diamond & Abrasives Engineering, 2021, 41(1): 17-20. doi: 10.13394/j.cnki.jgszz.2021.1.0003
    [11]ZHANG Jiayou, SONG Wanwan, BAI Yuzhen, HAN Bing, LI Lujie, ZHU Huining. Surface roughness prediction based on stepwise regression analysis[J]. Diamond & Abrasives Engineering, 2021, 41(6): 63-67. doi: 10.13394/j.cnki.jgszz.2021.6.0011
    [12]LI Sijia, FENG Shuguang, GUO Shenghui, YANG Li, GAO Jiyun. Preparation technology of diamond film by MPCVD method[J]. Diamond & Abrasives Engineering, 2021, 41(6): 31-37. doi: 10.13394/j.cnki.jgszz.2021.6.0006
    [13]LI Quancheng, SHEN Jianyun, HUANG Guoqin. Grinding force and surface roughness of alumina ceramics ground by brazed micro powder diamond wheel[J]. Diamond & Abrasives Engineering, 2021, 41(5): 59-64. doi: 10.13394/j.cnki.jgszz.2021.5.0010
    [14]ZHAO Ziyong, LI Zhenyu, CAI Yule, CHEN Zhimin, DING Yiliang, LAI Yang, QI Lixia. Preparation and characterization of diamond single crystal with native rough surface[J]. Diamond & Abrasives Engineering, 2019, 39(5): 7-12. doi: 10.13394/j.cnki.jgszz.2019.5.0002
    [15]JIA Lu, ZHANG Xiaofeng, XIA Zhihui, WANG Wensheng, LEI Dajiang. Surface roughness control technology of rake face of natural diamond tool[J]. Diamond & Abrasives Engineering, 2019, 39(2): 8-12. doi: 10.13394/j.cnki.jgszz.2019.2.0002
    [16]WU Bairong, XUE Changxi. Precision of rake face of mechanically lapped single crystal diamond tool[J]. Diamond & Abrasives Engineering, 2019, 39(2): 21-25. doi: 10.13394/j.cnki.jgszz.2019.2.0005
    [17]ZHAO Tianqi, WANG Xinchang, SUN Fanghong. Investigation on deposition and patterning of low residual stress HFCVD boron-doped diamond film[J]. Diamond & Abrasives Engineering, 2017, 37(1): 29-33. doi: 10.13394/j.cnki.jgszz.2017.1.0006
    [18]JIAN Xiaogang, ZHU Zhengyu, LEI Qiang. New progress on the improvement of adhesive strength of HFCVD diamond coating[J]. Diamond & Abrasives Engineering, 2016, 36(3): 11-16. doi: 10.13394/j.cnki.jgszz.2016.3.0003
    [19]YUAN Zewei, DU Haiyang, HE Yan, ZHANG Yue. Preparation of slurry for photocatalytic assisted chemical mechanical polishing CVD diamond[J]. Diamond & Abrasives Engineering, 2016, 36(5): 15-20,31. doi: 10.13394/j.cnki.jgszz.2016.5.0003
    [20]LI Shengchao, WANG Yandong, WANG Yushi, ZHANG Xiuming, XIU Shichao. Analysis on surface roughness in pre-stress hardening grinding process of 40Cr workpiece[J]. Diamond & Abrasives Engineering, 2016, 36(1): 20-24. doi: 10.13394/j.cnki.jgszz.2016.1.0005
  • Cited by

    Periodical cited type(3)

    1. 叶盛,赵上熳,邢忠福,彭志勇,郑宇亭,陈良贤,刘金龙,李成明,魏俊俊. 激光技术在金刚石加工中的研究及应用进展. 红外与激光工程. 2024(02): 44-65 .
    2. 吴海平,安康,许光宇,张亚琛,李利军,张永康,李鸿,张旭芳,刘峰斌,李成明. 金刚石/GaN异质外延与键合技术研究进展. 表面技术. 2024(22): 50-61 .
    3. 董春燕,张晓宇,顾德华,邵思武,刘金龙,陈良贤,李成明,魏俊俊. 不同激光功率下金刚石微孔成形及缺陷特征. 中国激光. 2023(24): 224-232 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.2 %FULLTEXT: 24.2 %META: 69.2 %META: 69.2 %PDF: 6.6 %PDF: 6.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %其他: 0.4 %其他: 0.4 %China: 0.5 %China: 0.5 %Jaipur: 0.1 %Jaipur: 0.1 %Koesan: 0.2 %Koesan: 0.2 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %Rochester: 0.1 %Rochester: 0.1 %Thane: 0.1 %Thane: 0.1 %[]: 0.1 %[]: 0.1 %上海: 2.9 %上海: 2.9 %东莞: 1.0 %东莞: 1.0 %京畿道: 0.1 %京畿道: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %信阳: 0.2 %信阳: 0.2 %兰州: 0.2 %兰州: 0.2 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 2.4 %北京: 2.4 %十堰: 0.4 %十堰: 0.4 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 0.5 %南京: 0.5 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %厦门: 0.7 %厦门: 0.7 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %天津: 1.0 %天津: 1.0 %太原: 0.2 %太原: 0.2 %宁波: 0.5 %宁波: 0.5 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 2.7 %张家口: 2.7 %成都: 0.5 %成都: 0.5 %扬州: 0.2 %扬州: 0.2 %新乡: 0.2 %新乡: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.1 %杭州: 1.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.4 %武汉: 0.4 %江门: 0.3 %江门: 0.3 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.6 %洛阳: 0.6 %济南: 1.1 %济南: 1.1 %深圳: 4.6 %深圳: 4.6 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %湘西: 5.4 %湘西: 5.4 %湛江: 0.2 %湛江: 0.2 %滁州: 0.2 %滁州: 0.2 %漯河: 0.7 %漯河: 0.7 %潮州: 0.3 %潮州: 0.3 %烟台: 0.1 %烟台: 0.1 %珀斯: 0.1 %珀斯: 0.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %红磡: 0.3 %红磡: 0.3 %绍兴: 0.2 %绍兴: 0.2 %美熹德: 0.1 %美熹德: 0.1 %聊城: 0.1 %聊城: 0.1 %芒廷维尤: 7.4 %芒廷维尤: 7.4 %芝加哥: 2.4 %芝加哥: 2.4 %苏州: 0.7 %苏州: 0.7 %荆州: 0.5 %荆州: 0.5 %莫斯科: 0.4 %莫斯科: 0.4 %衡水: 0.5 %衡水: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 22.0 %西宁: 22.0 %西安: 0.1 %西安: 0.1 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贝尔维尤: 0.2 %贝尔维尤: 0.2 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.2 %邯郸: 0.2 %郑州: 8.1 %郑州: 8.1 %重庆: 1.2 %重庆: 1.2 %镇江: 0.4 %镇江: 0.4 %长沙: 4.3 %长沙: 4.3 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.8 %青岛: 0.8 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他ChinaJaipurKoesanKorea Republic ofRochesterThane[]上海东莞京畿道佛山保定信阳兰州凤凰城北京十堰华盛顿州南京南昌南通厦门台州合肥哈尔滨哥伦布嘉兴圣彼得堡天津太原宁波宜昌宣城常州平顶山广州张家口成都扬州新乡昆明晋城朝阳杭州格兰特县武汉江门沈阳洛阳济南深圳温州湖州湘潭湘西湛江滁州漯河潮州烟台珀斯石家庄福州红磡绍兴美熹德聊城芒廷维尤芝加哥苏州荆州莫斯科衡水衢州西宁西安西雅图诺沃克贝尔维尤贵阳费利蒙运城邯郸郑州重庆镇江长沙阳泉青岛齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (909) PDF downloads(87) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return