Structured dimple surface can effectively reduce the drag friction resistance of the part surface, thereby improving the movement performance of the part in the fluid. A superhard material grinding wheel with phyllotactic-arranged abrasive grains is designed based on the theory of biological leaf alignment, and used to grind the structured dimple surface of outer circle. In order to explore the grinding principle of the structured dimple surface, the kinematics simulation of grinding process of abrasive grain phyllotactic arrangement wheel is carried out by using MATLAB. The influences of abrasive grain phyllotactic arrangement parameters and grinding parameters on the surface topography of structured pits in grinding area are studied. The simulation results show that the rotational speed ratio affects the dimple radial arrangement and dimple size, which is that the higher the rotational speed ratio is, the denser the dimple radial arrangement is and the smaller the dimple size is. The phyllotactic coefficient affects the dimple axial arrangement, thus smaller phyllotactic coefficient leading to denser dimple axial arrangement. The grinding depth affects the dimple size. As the wheel grinds deeper, the dimple width and depth become larger, and so does the burr heave height which is about half of the grinding depth.