CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
GUO Weicheng, HAN Shaojie, HE Qichao, GUO Miaoxian. Ultra-low temperature grinding process and surface integrity of SiCp/Al material[J]. Diamond & Abrasives Engineering, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129
Citation: GUO Weicheng, HAN Shaojie, HE Qichao, GUO Miaoxian. Ultra-low temperature grinding process and surface integrity of SiCp/Al material[J]. Diamond & Abrasives Engineering, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129

Ultra-low temperature grinding process and surface integrity of SiCp/Al material

doi: 10.13394/j.cnki.jgszz.2024.0129
More Information
  • Received Date: 2024-08-22
  • Rev Recd Date: 2024-10-09
  •   Objectives  As a new-generation high-performance structural material, silicon carbide particle-reinforced aluminum matrix composites (SiCp/Al) exhibit outstanding specific strength, wear resistance, and thermal stability, making them highly valuable in aerospace precision components, electronic packaging substrates, and other advanced manufacturing fields. However, common machining-induced damage issues such as matrix smearing and particle fragmentation severely compromise surface integrity and service performance. This study focuses on 20% SiCp/Al composites, systematically investigating the effects of process parameters on grinding force evolution, surface damage mechanisms, and surface integrity by comparing liquid nitrogen ultra-low temperature and room temperature air-cooling grinding conditions. The aim is to reveal the regulatory mechanisms of ultra-low temperature environments on composite machining performance and provide theoretical guidance for precision process optimization.  Methods  Grinding experiments are conducted on 20% SiCp/Al composites using diamond grinding wheels under single-factor conditions. The ultra-low temperature grinding experiments are performed on a vertical machining center with internal liquid nitrogen jet cooling, while conventional room temperature air-cooling serves as the control group. Process parameters includes wheel speed 2.04 to 2.98 m/s, feed rate 50 to 200 mm/min, grinding depth 5 to 20 μm, and grinding width 6 mm. A dynamometer monitored normal and tangential grinding forces in real time. Surface roughness is measured via white light interferometry, residual stress measured via X-ray diffraction analysis, and microhardness measured via a microhardness tester. Surface and subsurface damage is characterized using scanning electron microscopy.  Results  (1) Under both cooling conditions, grinding forces decreases with increased wheel speed and increases linearly with feed rate and grinding depth. The ultra-low temperature environment significantly enhances material yield strength and interfacial bonding strength, resulting in average grinding forces 1.7 to 2.7 times higher than those under room temperature air-cooling conditions. While room temperature grinding forces shows minor variations with parameter changes, wheel speed and feed rate exerts substantial impacts in ultra-low temperature grinding. (2) Grinding-induced damage in SiCp/Al primarily manifests as matrix smearing/tearing and SiC particle fracture/pullout. Despite higher grinding forces under ultra-low temperature conditions, surface damage is consistently less severe than under room temperature cooling. In ultra-low temperature grinding, reduced thermal effects and increased material strength/hardness promotes localized stress concentration, leading to minor matrix smearing and particle fracture. In contrast, room temperature grinding induces extensive matrix tearing, particle pullout, and associated cracks/pits. (3) Ultra-low temperature grinding effectively suppresses matrix smearing, pits, and crack propagation, achieving surface roughness values 16% to 42% lower than those under room temperature air-cooling conditions. Higher grinding forces under ultra-low temperature conditions enhances plastic deformation strengthening, while liquid nitrogen cooling minimizes thermal softening effects. Consequently, ultra-low temperature grinding generates larger residual compressive stress magnitudes and higher surface microhardness compared to room temperature grinding.  Conclusions  The liquid nitrogen ultra-low temperature environment significantly improves the mechanical properties of the SiCp/Al matrix and interfaces through cryogenic strengthening. Although grinding forces increase, this approach effectively suppresses machining damage, substantially reduces surface roughness, and generates enhanced residual compressive stress fields and uniform hardened layers. The influence of process parameters on grinding forces and surface integrity follows similar trends under both cooling conditions. Optimal parameter combinations with higher wheel speeds and smaller depths of cut enable efficient, low-damage machining. The transition in damage mechanisms and improvements in surface integrity validate that ultra-low temperature environments optimize material removal processes through thermo-mechanical coupling suppression and mechanical property enhancement, offering a novel pathway for precision machining of particle-reinforced composites.

     

  • loading
  • [1]
    武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79-90. doi: 10.15302/J-SSCAE-2020.02.012

    WU Gaohui, KUANG Zeyang. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study of CAE, 2020, 22(2): 79-90. doi: 10.15302/J-SSCAE-2020.02.012
    [2]
    GU P, ZHU C, SUN Y, et al. Surface roughness prediction of SiCp/Al composites in ultrasonic vibration-assisted grinding [J]. Journal of Manufacturing Processes, 2023, 101: 687-700. doi: 10.1016/j.jmapro.2023.05.093
    [3]
    WANG H, ZHANG H, ZHOU M, et al. Study of surface defect detection techniques in grinding of SiCp/Al composites [J]. Applied Sciences, 2023, 13(21): 11961. doi: 10.3390/app132111961
    [4]
    王永青, 郭东明, 郭立杰, 等. 超低温加工技术的研究现状及发展趋势 [J]. 上海航天(中英文), 2020, 37(3): 11-21. doi: 10.19328/j.cnki.1006-1630.2020.03.002

    WANG Yongqing, GUO Dongming, GUO Lijie, et al. Research status and development trend of ultra-low temperature machining technology [J]. Aerospace Shanghai (Chinese & English), 2020, 37(3): 11-21. doi: 10.19328/j.cnki.1006-1630.2020.03.002
    [5]
    ZHU C, GU P, LIU D, et al. Evaluation of surface topography of SiCp/Al composite in grinding [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 2807-2821. doi: 10.1007/s00170-019-03362-5
    [6]
    YIN G, GONG Y, LI Y, et al. Modeling and evaluation in grinding of SiCp/Al composites with single diamond grain [J]. International Journal of Mechanical Sciences, 2019, 163: 105137. doi: 10.1016/j.ijmecsci.2019.105137
    [7]
    尹逊雨, 高奇, 陈野, 等. 20%SiCp/Al复合材料磨削机理及表面粗糙度研究 [J]. 制造技术与机床, 2022(12): 107-112. doi: 10.19287/j.mtmt.1005-2402.2022.12.017

    YIN Xunyu, GAO Qi, CHEN Ye, et al. Study on micro-grinding mechanism and surface quality of 20% SiCp/Al composites [J]. Technology and Manufacture, 2022(12): 107-112. doi: 10.19287/j.mtmt.1005-2402.2022.12.017
    [8]
    范磊, 王娜, 尹国强. 基于单颗磨粒磨削的SiCp/Al材料去除机理研究 [J]. 组合机床与自动化加工技术, 2024(10): 126-131. doi: 10.13462/j.cnki.mmtamt.2024.10.025

    FAN Lei, WANG Na, YIN Guoqiang. Research on the material removal mechanism of SiCp/Al based on single grain grinding [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(10): 126-131. doi: 10.13462/j.cnki.mmtamt.2024.10.025
    [9]
    李爽, 牛秋林, 李常平, 等. 涂层刀具低温铣削SiCp/Al 复合材料表面质量研究 [J]. 宇航材料工艺, 2021, 51(2): 68-72. doi: 10.12044/j.issn.1007-2330.2021.02.011

    LI Shuang, NIU Qiulin, LI Changping, et al. Surface quality of SiCp/Al composites milled by coated tools at low temperature [J]. Aerospace Materials & Technology, 2021, 51(2): 68-72. doi: 10.12044/j.issn.1007-2330.2021.02.011
    [10]
    YU W, CHEN J, MING W, et al. Feasibility of supercritical CO2-based minimum quantity lubrication to improve the surface integrity of 50% SiCp/Al composites [J]. Journal of Manufacturing Processes, 2022(73): 364-374. doi: 10.1016/j.jmapro.2021.11.022
    [11]
    ROSS N S, MANASEA S B J A, NAGARAJAN S, et al. Novel use of ultra-low temperature cooling conditions in improving the machining performance of Al 8011/nano-SiC composites [J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(3): 1703-1715. doi: 10.1007/s00170-023-12382-1
    [12]
    LAGHARI R A, HE N, JAMIL M, et al. Tribological and machining characteristics of milling SiCp/Al MMC composites under sustainable cooling conditions [J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(5/6): 2613-2630. doi: 10.1007/s00170-023-12083-9
    [13]
    ABBAS C A, HUANG C, BINGHAI L, et al. Research on ultra-low temperature high-speed drilling performance of metal matrix composite materials (Al/SiC) using ultra-low temperatureally treated drills [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(8): 448. doi: 10.1007/s40430-024-05007-5
    [14]
    温雪龙, 王承宝, 巩亚东, 等. 涂层微磨具的制备及磨削表面质量实验研究 [J]. 东北大学学报(自然科学版), 2022, 43(5): 681-688. doi: 10.12068/j.issn.1005-3026.2022.05.011

    WEN Xuelong, WANG Chengbao, GONG Yadong, et al. Preparation of coated micro-grinding tools and experimental research on grinding surface quality [J]. Journal of Northeastern University (Natural Science), 2022, 43(5): 681-688. doi: 10.12068/j.issn.1005-3026.2022.05.011
    [15]
    郭维诚, 吴杰, 郭淼现, 等. SiCp/Al超低温材料流动行为和本构模型构建 [J]. 材料导报, 2025, 39(4): 204-211. doi: 10.11896/cldb.23110133

    GUO Weicheng, WU Jie, GUO Miaoxian, et al. Ultra-low temperature flow behavior of SiCp/Al composite and construction of constitutive model [J]. Materials Reports, 2025, 39(4): 204-211. doi: 10.11896/cldb.23110133
    [16]
    王少雷, 张丽影, 梁尤宇, 等. 磨削工艺参数对SiCp/Al三维粗糙度的影响 [J]. 制造技术与机床, 2024(4): 63-70. doi: 10.19287/j.mtmt.1005-2402.2024.04.010

    WANG Shaolei, ZHANG Liying, LIANG Youyu, et al. Influence of the grinding process parameters on the SiCp/Althree-dimensional Roughness [J]. Manufacturing Technology & Machine Tool, 2024(4): 63-70. doi: 10.19287/j.mtmt.1005-2402.2024.04.010
    [17]
    林洁琼, 于行, 周岩, 等. 超声振动辅助车削SiCp/Al切屑形成机理及表面粗糙度研究 [J]. 表面技术, 2024, 53(6): 144-156. doi: 10.16490/j.cnki.issn.1001-3660.2024.06.013

    LIN Jieqiong, YU Xing, ZHOU Yan, et al. Chip formation mechanism and surface roughness of SiCp/Al composites by ultrasonic vibration-assisted turning [J]. Surface Technology, 2024, 53(6): 144-156. doi: 10.16490/j.cnki.issn.1001-3660.2024.06.013
    [18]
    ZHANG H, QU L, DING C. Study of Surface integrity of SiCp/Al composites using high-speed milling under ultra-low temperature liquid nitrogen conditions [J]. Machines, 2023, 11(6): 608. doi: 10.3390/machines11060608
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (31) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return