CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
TIAN Chunyue, DING Junfei, LI Wenhui, LI Xiuhong, YANG Shengqiang. Dual camera testing method for 3D velocity field of rolling and grinding blocks[J]. Diamond & Abrasives Engineering, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014
Citation: TIAN Chunyue, DING Junfei, LI Wenhui, LI Xiuhong, YANG Shengqiang. Dual camera testing method for 3D velocity field of rolling and grinding blocks[J]. Diamond & Abrasives Engineering, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014

Dual camera testing method for 3D velocity field of rolling and grinding blocks

doi: 10.13394/j.cnki.jgszz.2024.0014
More Information
  • Received Date: 2024-01-18
  • Accepted Date: 2024-10-10
  • Rev Recd Date: 2024-08-16
  •   Objectives  The motion speed of the rolling and polishing block is one of the key factors affecting the overall machining effect of rolling polishing. However, the traditional method for measuring the flow velocity of rolling and polishing blocks has many shortcomings, especially in terms of testing accuracy and efficiency. The traditional method often cannot directly obtain velocity data and is limited by single-point testing, which cannot comprehensively and dynamically reflect the motion trajectory of the rolling and polishing block flow field. In addition, the interference of the measurement process with the flow field of the rolling and polishing block is also a factor that cannot be ignored in the testing process of the traditional method, and it significantly affects the accuracy of the test results. Therefore, a dual-camera testing method for the three-dimensional velocity field of the rolling and polishing block is proposed, aiming to achieve accurate measurement of the motion velocity of the rolling polishing block through this method and further improve the effect and accuracy of rolling polishing machining.  Methods  Two Dushen industrial cameras are used to synchronously capture motion images of the rolling polishing block from different perspectives, and then the motion trajectory of the rolling polishing block in three-dimensional space is constructed using disparity calculation and feature point tracking algorithms. The specific process is as follows: First, the position changes of the surface feature points of the rolling grinding block are extracted through the image matching algorithm. Then, by using the calibration parameters of the camera (including internal parameters, external parameters, and distortion coefficients), the two-dimensional image coordinates are mapped to the three-dimensional coordinate system to complete the calculation of the velocity vector. Next, a three-dimensional velocity field test system for the rolling and polishing grinding block are established, and the accuracy and stability of the system are be verified through displacement test experiments. The three-dimensional velocity field test of the vertical vibration roller grinding and finishing processing equipment is conducted on the roller grinding blocks to verify its application feasibility and stability in actual processing, and to further evaluate its performance and advantages in roller grinding and finishing processing.  Results  The displacement test results show that the displacement values measured by the testing system are very close to the actual applied displacement values. In the X direction, the absolute value of the average measurement error is less than 0.10 mm. In the Z direction, the absolute value of the average measurement error is less than 0.15 mm. The three-dimensional velocity field test experiment of the rolling polishing block reveals the motion law of the flow field of the rolling polishing block. The measured three-dimensional velocity field of the rolling polishing block is basically consistent with its actual motion law, verifying the effectiveness and accuracy of this testing method in measuring the velocity of the rolling polishing block. Moreover, it can accurately capture the motion trajectory without interfering with the flow field, providing reliable motion analysis data for the grinding and finishing process.  Conclusions  The proposed dual camera testing method for the three-dimensional velocity field of rolling polishing blocks provides a new technical approach for measuring the three-dimensional velocity field of rolling polishing blocks. This method can accurately and stably obtain the three-dimensional velocity field of rolling polishing blocks and reveal their motion laws, providing an effective tool for further optimizing the rolling polishing process. This testing system is expected to play a greater role in high-precision motion analysis and machining optimization, providing assistance for other similar complex flow field tests.

     

  • loading
  • [1]
    杨胜强, 李文辉, 陈红玲. 表面光整加工理论与新技术 [M]. 北京: 国防工业出版社, 2011.

    YANG Shengqiang, LI Wenhui, CHEN Hongling. Surface finishing theory and new technologies [M]. Beijing: National Defense Industry Press, 2011.
    [2]
    杨胜强, 李文辉, 李秀红, 等. 高性能零件滚磨光整加工的研究进展 [J]. 表面技术, 2019, 48(10): 13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002

    YANG Shengqiang, LI Wenhui, LI Xiuhong, et al. Research development of mass finishing for high-performance parts [J]. surface Technology, 2019, 48(10): 13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002
    [3]
    KUMAR P P, SATHYAN S. Simulation of 1D abrasive vibratory finishing process [J]. Advanced Materials Research, 2012(565): 290-295. doi: 10.4028/www.scientific.net/AMR.565.290
    [4]
    CIAMPINI D, PAPINI M, SPELT J K. Impact velocity measurement of media in a vibratory finisher [J]. Journal of Materials Processing Technology, 2007, 183(2/3): 347-357. doi: 10.1016/j.jmatprotec.2006.10.024
    [5]
    BAGHBANAN M R, YABUKI A, TIMSIT R S, et al. Tribological behavior of aluminum alloys in a vibratory finishing process [J]. Wear, 2003, 255(7): 1369-1379. doi: 10.1016/S0043-1648(03)00124-8
    [6]
    UHLMANN E, EULITZ A, DETHLEFS A. Discrete element modelling of drag finishing [J]. Procedia CIRP, 2015, 31: 369-374. doi: 10.1016/j.procir.2015.03.021
    [7]
    LIU J Z, GRACE J R, BI X T. Novel multifunctional optical-fiber probe: I. development and validation [J]. AIChE Journal, 2003, 49(6): 1405-1420. doi: 10.1002/aic.690490607
    [8]
    CIAMPINI D, PAPINI M, SPELT J K. Modeling the development of Almen strip curvature in vibratory finishing [J]. Journal of Materials Processing Technology, 2009, 209(6): 2923-2939. doi: 10.1016/j.jmatprotec.2008.06.060
    [9]
    DOMBLESKY J, EVANS R, CARIAPA V. Material removal model for vibratory finishing [J]. International Journal of Production Research, 2004, 42(5): 1029-1041. doi: 10.1080/00207540310001619641
    [10]
    LI X H, WU F F, LI W H, et al. Kinematic characteristics of mass finishing process with the parallel spindle: Velocity measurement and analysis of the media [J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12. doi: 10.1177/1687814017729091
    [11]
    吴远超, 李秀红, 王嘉明, 等. 水平振动抛磨颗粒介质流场特性分析 [J]. 表面技术, 2021, 50(11): 329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035

    WU Yuanchao, LI Xiuhong, WANG Jiaming, et al. Flow field characteristics analysis of media for horizontal vibratory mass finishing [J]. Surface Technology, 2021, 50(11): 329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035
    [12]
    赵恺, 王娜, 杨胜强, 等. 主轴式滚磨光整加工EDEM-FLUENT耦合仿真模拟分析研究 [J]. 机械设计与制造, 2023(7): 6-11. doi: 10.3969/j.issn.1001-3997.2023.07.002

    ZHAO Kai, WANG Na, YANG Shengqiang, et al. Study on EDEM-FLUENT coupling simulation analysis of spindle barrel finishing [J]. Machinery Design and Manufacture, 2023(7): 6-11. doi: 10.3969/j.issn.1001-3997.2023.07.002
    [13]
    王程伟, 李秀红, 李文辉, 等. 主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析 [J]. 表面技术, 2018, 47(11): 251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036

    WANG Chengwei, LI Xiuhong, LI Wenhui, et al. Analaysis on numerical simulation and mechanism of medium flow field in spindle barrel finishing process [J]. Surface Technology, 2018, 47(11): 251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036
    [14]
    PAN B, QIAN K, XIE H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review [J]. Measurement Science & Technology, 2009, 20(6): 062001. doi: 10.1088/0957-0233/20/6/062001
    [15]
    GRANT. Particle image velocimetry: A review [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(1): 55-76. doi: 10.1243/0954406971521665
    [16]
    ADRIAN R J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005, 39(2): 159-169. doi: 10.1007/s00348-005-0991-7
    [17]
    SCARANO F. Iterative image deformation methods in PIV [J]. Measurement Science & Technology, 2002, 13(1): R1-R19. doi: 10.1088/0957-0233/13/1/201
    [18]
    武甜. 基于图像相关法的滚抛磨块平面流场测试研究 [D]. 太原: 太原理工大学, 2022.

    WU Tian. Image correlation-based test study of flat flow field of media [D]. Taiyuan: Taiyuan University of Technology, 2022.
    [19]
    LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [20]
    HARTLEY R I, STURM P. Triangulation [J]. Computer Vision and Image Understanding, 1997, 68(2): 146-157. doi: 10.1006/cviu.1997.0547
    [21]
    LU H, CARY P D. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient [J]. Experimental Mechanics, 2000, 40(4): 393-400. doi: 10.1007/BF02326485
    [22]
    PAN B, XIE H, WANG Z. Equivalence of digital image correlation criteria for pattern matching [J]. Applied Optics, 2010, 49(28): 5501-5509. doi: 10.1364/AO.49.005501
    [23]
    BAKER S, MATTHEWS I. Lucas-Kanade 20 years on: A unifying framework [J]. International Journal of Computer Vision, 2004, 56(3): 221-255. doi: 10.1023/B:VISI.0000011205.11775.fd
    [24]
    MICHAEL U. Splines: A perfect fit for signal and image processing [J]. IEEE Signal Processing Magazine, 1999, 16(6): 22-38. doi: 10.1109/79.799930
    [25]
    张翔宇, 柴宇明, 齐珂心, 等. 虚拟视觉刺激引起幼年斑马鱼捕食行为放弃的研究 [J]. 生物化学与生物物理进展, 2023, 50(6): 1454-1465. doi: 10.16476/j.pibb.2022.0318

    ZHANG Xiangyu, CHAI Yuming, QI Kexin, et al. Virtual visual stimulation induces predation by juvenile zebrafish research on behavioral abandonment [J]. Progress in Biochemistry and Biophysics, 2023, 50(6): 1454-1465. doi: 10.16476/j.pibb.2022.0318
    [26]
    朱华福. 基于PLC的平均值和标准偏差计算在烟草制丝线上的运用 [J]. 中国信息化, 2013(14): 171-172.

    ZHU Huafu. The application of average and standard deviation calculation based on PLC in tobacco silk production line [J]. China Informatization, 2013(14): 171-172.
    [27]
    HU Z, XIE H, LU J, et al. Error evaluation technique for three-dimensional digital image correlation [J]. Applied Optics, 2011, 50(33): 6239-6247. doi: 10.1364/AO.50.006239
    [28]
    HASHIMOTO F, JOHNSON S P. Modeling of vibratory finishing machines [J]. CIRP Annals, 2015, 64(1): 345-348. doi: 10.1016/j.cirp.2015.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (38) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return