CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCp/Al材料的超低温磨削工艺与表面完整性

郭维诚 韩少杰 何启超 郭淼现

郭维诚, 韩少杰, 何启超, 郭淼现. SiCp/Al材料的超低温磨削工艺与表面完整性[J]. 金刚石与磨料磨具工程, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129
引用本文: 郭维诚, 韩少杰, 何启超, 郭淼现. SiCp/Al材料的超低温磨削工艺与表面完整性[J]. 金刚石与磨料磨具工程, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129
GUO Weicheng, HAN Shaojie, HE Qichao, GUO Miaoxian. Ultra-low temperature grinding process and surface integrity of SiCp/Al material[J]. Diamond & Abrasives Engineering, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129
Citation: GUO Weicheng, HAN Shaojie, HE Qichao, GUO Miaoxian. Ultra-low temperature grinding process and surface integrity of SiCp/Al material[J]. Diamond & Abrasives Engineering, 2025, 45(4): 486-495. doi: 10.13394/j.cnki.jgszz.2024.0129

SiCp/Al材料的超低温磨削工艺与表面完整性

doi: 10.13394/j.cnki.jgszz.2024.0129
基金项目: 国家自然科学基金(52105470,52275452);上海市自然科学基金(22ZR1442900)。
详细信息
    作者简介:

    郭维诚,男,1990年生,博士、副教授。主要研究方向:复合材料精密加工技术。E-mail:wcguo@usst.edu.cn

    通讯作者:

    郭淼现,1988年生,博士、副教授。主要研究方向:切削加工及振动控制。E-mail:guomx@usst.edu.cn

  • 中图分类号: TG580

Ultra-low temperature grinding process and surface integrity of SiCp/Al material

  • 摘要: SiCp/Al作为一种典型的颗粒增强金属基复合材料,凭借其优异的综合性能在航空航天、精密电子等领域得到了广泛应用,但其物理特性与可加工性能仍有提升空间。针对20%体积分数的SiCp/Al复合材料进行液氮超低温与室温风冷磨削实验,对比2种冷却介质下工艺参数对其磨削力、表面损伤的影响,并分析其表面粗糙度、残余应力和显微硬度的变化规律。结果表明:SiCp/Al的超低温磨削力和表面完整性变化趋势与室温风冷磨削时的相近;超低温增加了铝基体的致密性与均匀性,提高了材料整体和界面结合强度,使其磨削力较室温风冷时的更大,且能有效抑制铝基体和SiC颗粒的磨削损伤,降低材料表面粗糙度,提高材料的残余压应力和硬度,从而综合提升材料表面质量。

     

  • 图  1  SiCp/Al的表面形貌

    Figure  1.  Surface morphology of SiCp/Al

    图  2  内冷式金刚石砂轮及其设计图

    Figure  2.  Internally cooled diamond grinding wheel and its design drawing

    图  3  SiCp/Al超低温和室温风冷磨削实验与测试现场布局

    Figure  3.  Layout of experimental and testing sites for SiCp/Al ultra-low temperature and room temperature air-cooling grinding

    图  4  不同工艺参数与SiCp/Al磨削力的关系

    Figure  4.  Relationship between different process parameters and SiCp/Al grinding forces

    图  5  不同砂轮速度下超低温和室温风冷时的SiCp/Al表面形貌

    Figure  5.  SiCp/Al surface morphologies at ultra-low temperature and room temperature air-cooling under different grinding wheel speeds

    图  6  不同进给速度下超低温和室温风冷时的SiCp/Al表面形貌

    Figure  6.  SiCp/Al surface morphologies at ultra-low temperature and room temperature air-cooling at different feed speeds

    图  7  不同磨削深度下超低温和室温风冷时的SiCp/Al表面形貌

    Figure  7.  SiCp/Al surface morphologies under ultra-low temperature and room temperature air-cooling at different grinding depths

    图  8  同一磨削参数下SiCp/Al的表面形貌对比

    Figure  8.  Comparison of surface morphology of SiCp/Al with same grinding parameters

    图  9  不同工艺参数与SiCp/Al表面粗糙度的关系

    Figure  9.  Relationship between different process parameters and SiCp/Al surface roughness

    图  10  不同工艺参数与SiCp/Al表面残余应力的关系

    Figure  10.  Relationship between different process parameters and SiCp/Al surface residual stress

    图  11  不同工艺参数与SiCp/Al表面显微硬度的关系

    Figure  11.  Relationship between different process parameters and microhardness of SiCp/Al surface

    表  1  SiCp/Al复合材料的主要化学成分

    Table  1.   Main chemical compositions of SiCp/Al

    成分 质量分数 ω / %
    SiC 19.50
    Mg 1.25
    Si 0.22
    Ti < 0.03
    Fe 0.08
    Cu 3.36
    Al 余量
    下载: 导出CSV

    表  2  SiCp/Al复合材料的机械物理性能

    Table  2.   Mechanical and physical properties of SiCp/Al

    参数 取值
    抗拉强度 σ1 / MPa 560
    屈服强度 σ2 / MPa 370
    密度 ρ / (g·cm−3) 2.84
    泊松比 ε 0.38
    弹性模量 E / GPa 105
    热导率 K / (W·m−1·K−1) 178
    线膨胀系数 λ / K−1 1.51 × 10−6
    下载: 导出CSV
  • [1] 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79-90. doi: 10.15302/J-SSCAE-2020.02.012

    WU Gaohui, KUANG Zeyang. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study of CAE, 2020, 22(2): 79-90. doi: 10.15302/J-SSCAE-2020.02.012
    [2] GU P, ZHU C, SUN Y, et al. Surface roughness prediction of SiCp/Al composites in ultrasonic vibration-assisted grinding [J]. Journal of Manufacturing Processes, 2023, 101: 687-700. doi: 10.1016/j.jmapro.2023.05.093
    [3] WANG H, ZHANG H, ZHOU M, et al. Study of surface defect detection techniques in grinding of SiCp/Al composites [J]. Applied Sciences, 2023, 13(21): 11961. doi: 10.3390/app132111961
    [4] 王永青, 郭东明, 郭立杰, 等. 超低温加工技术的研究现状及发展趋势 [J]. 上海航天(中英文), 2020, 37(3): 11-21. doi: 10.19328/j.cnki.1006-1630.2020.03.002

    WANG Yongqing, GUO Dongming, GUO Lijie, et al. Research status and development trend of ultra-low temperature machining technology [J]. Aerospace Shanghai (Chinese & English), 2020, 37(3): 11-21. doi: 10.19328/j.cnki.1006-1630.2020.03.002
    [5] ZHU C, GU P, LIU D, et al. Evaluation of surface topography of SiCp/Al composite in grinding [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 2807-2821. doi: 10.1007/s00170-019-03362-5
    [6] YIN G, GONG Y, LI Y, et al. Modeling and evaluation in grinding of SiCp/Al composites with single diamond grain [J]. International Journal of Mechanical Sciences, 2019, 163: 105137. doi: 10.1016/j.ijmecsci.2019.105137
    [7] 尹逊雨, 高奇, 陈野, 等. 20%SiCp/Al复合材料磨削机理及表面粗糙度研究 [J]. 制造技术与机床, 2022(12): 107-112. doi: 10.19287/j.mtmt.1005-2402.2022.12.017

    YIN Xunyu, GAO Qi, CHEN Ye, et al. Study on micro-grinding mechanism and surface quality of 20% SiCp/Al composites [J]. Technology and Manufacture, 2022(12): 107-112. doi: 10.19287/j.mtmt.1005-2402.2022.12.017
    [8] 范磊, 王娜, 尹国强. 基于单颗磨粒磨削的SiCp/Al材料去除机理研究 [J]. 组合机床与自动化加工技术, 2024(10): 126-131. doi: 10.13462/j.cnki.mmtamt.2024.10.025

    FAN Lei, WANG Na, YIN Guoqiang. Research on the material removal mechanism of SiCp/Al based on single grain grinding [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(10): 126-131. doi: 10.13462/j.cnki.mmtamt.2024.10.025
    [9] 李爽, 牛秋林, 李常平, 等. 涂层刀具低温铣削SiCp/Al 复合材料表面质量研究 [J]. 宇航材料工艺, 2021, 51(2): 68-72. doi: 10.12044/j.issn.1007-2330.2021.02.011

    LI Shuang, NIU Qiulin, LI Changping, et al. Surface quality of SiCp/Al composites milled by coated tools at low temperature [J]. Aerospace Materials & Technology, 2021, 51(2): 68-72. doi: 10.12044/j.issn.1007-2330.2021.02.011
    [10] YU W, CHEN J, MING W, et al. Feasibility of supercritical CO2-based minimum quantity lubrication to improve the surface integrity of 50% SiCp/Al composites [J]. Journal of Manufacturing Processes, 2022(73): 364-374. doi: 10.1016/j.jmapro.2021.11.022
    [11] ROSS N S, MANASEA S B J A, NAGARAJAN S, et al. Novel use of ultra-low temperature cooling conditions in improving the machining performance of Al 8011/nano-SiC composites [J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(3): 1703-1715. doi: 10.1007/s00170-023-12382-1
    [12] LAGHARI R A, HE N, JAMIL M, et al. Tribological and machining characteristics of milling SiCp/Al MMC composites under sustainable cooling conditions [J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(5/6): 2613-2630. doi: 10.1007/s00170-023-12083-9
    [13] ABBAS C A, HUANG C, BINGHAI L, et al. Research on ultra-low temperature high-speed drilling performance of metal matrix composite materials (Al/SiC) using ultra-low temperatureally treated drills [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(8): 448. doi: 10.1007/s40430-024-05007-5
    [14] 温雪龙, 王承宝, 巩亚东, 等. 涂层微磨具的制备及磨削表面质量实验研究 [J]. 东北大学学报(自然科学版), 2022, 43(5): 681-688. doi: 10.12068/j.issn.1005-3026.2022.05.011

    WEN Xuelong, WANG Chengbao, GONG Yadong, et al. Preparation of coated micro-grinding tools and experimental research on grinding surface quality [J]. Journal of Northeastern University (Natural Science), 2022, 43(5): 681-688. doi: 10.12068/j.issn.1005-3026.2022.05.011
    [15] 郭维诚, 吴杰, 郭淼现, 等. SiCp/Al超低温材料流动行为和本构模型构建 [J]. 材料导报, 2025, 39(4): 204-211. doi: 10.11896/cldb.23110133

    GUO Weicheng, WU Jie, GUO Miaoxian, et al. Ultra-low temperature flow behavior of SiCp/Al composite and construction of constitutive model [J]. Materials Reports, 2025, 39(4): 204-211. doi: 10.11896/cldb.23110133
    [16] 王少雷, 张丽影, 梁尤宇, 等. 磨削工艺参数对SiCp/Al三维粗糙度的影响 [J]. 制造技术与机床, 2024(4): 63-70. doi: 10.19287/j.mtmt.1005-2402.2024.04.010

    WANG Shaolei, ZHANG Liying, LIANG Youyu, et al. Influence of the grinding process parameters on the SiCp/Althree-dimensional Roughness [J]. Manufacturing Technology & Machine Tool, 2024(4): 63-70. doi: 10.19287/j.mtmt.1005-2402.2024.04.010
    [17] 林洁琼, 于行, 周岩, 等. 超声振动辅助车削SiCp/Al切屑形成机理及表面粗糙度研究 [J]. 表面技术, 2024, 53(6): 144-156. doi: 10.16490/j.cnki.issn.1001-3660.2024.06.013

    LIN Jieqiong, YU Xing, ZHOU Yan, et al. Chip formation mechanism and surface roughness of SiCp/Al composites by ultrasonic vibration-assisted turning [J]. Surface Technology, 2024, 53(6): 144-156. doi: 10.16490/j.cnki.issn.1001-3660.2024.06.013
    [18] ZHANG H, QU L, DING C. Study of Surface integrity of SiCp/Al composites using high-speed milling under ultra-low temperature liquid nitrogen conditions [J]. Machines, 2023, 11(6): 608. doi: 10.3390/machines11060608
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-22
  • 修回日期:  2024-10-09
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回