CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

45钢表面激光熔覆金刚石合金涂层的组织性能分析

芦甜 王传留 马少明 朱颖

芦甜, 王传留, 马少明, 朱颖. 45钢表面激光熔覆金刚石合金涂层的组织性能分析[J]. 金刚石与磨料磨具工程, 2025, 45(4): 470-478. doi: 10.13394/j.cnki.jgszz.2024.0100
引用本文: 芦甜, 王传留, 马少明, 朱颖. 45钢表面激光熔覆金刚石合金涂层的组织性能分析[J]. 金刚石与磨料磨具工程, 2025, 45(4): 470-478. doi: 10.13394/j.cnki.jgszz.2024.0100
LU Tian, WANG Chuanliu, MA Shaoming, ZHU Ying. Analysis of microstructure and properties of laser cladding diamond alloy coating on 45 steel surface[J]. Diamond & Abrasives Engineering, 2025, 45(4): 470-478. doi: 10.13394/j.cnki.jgszz.2024.0100
Citation: LU Tian, WANG Chuanliu, MA Shaoming, ZHU Ying. Analysis of microstructure and properties of laser cladding diamond alloy coating on 45 steel surface[J]. Diamond & Abrasives Engineering, 2025, 45(4): 470-478. doi: 10.13394/j.cnki.jgszz.2024.0100

45钢表面激光熔覆金刚石合金涂层的组织性能分析

doi: 10.13394/j.cnki.jgszz.2024.0100
基金项目: 中煤科工西安研究院(集团)有限公司科技创新基金(2024XAQN02); 国家自然科学基金资助项目(42302355)。
详细信息
    作者简介:

    芦甜,女,1994年生,硕士、助理研究员。主要研究方向:钻探装备制造工艺。E-mail:ltmelody@163.com

  • 中图分类号: TQ164; TG456.7

Analysis of microstructure and properties of laser cladding diamond alloy coating on 45 steel surface

  • 摘要: 为提高45钢的耐磨性,采用激光熔覆工艺在其表面制备以镀Ni金刚石为耐磨相、Ti与WC等材料为结构增强相的新型合金耐磨涂层,研究激光功率对金刚石石墨化及涂层冶金结合的影响,并通过金相显微镜、扫描电镜和维氏硬度计分析合金涂层的显微组织和显微硬度。结果表明:在45钢表面激光熔覆镀Ni金刚石合金涂层后,合金涂层中含有完整的金刚石颗粒且其与黏结相之间形成良好的冶金结合,合金涂层与基体间无明显分层现象;使用镀Ni金刚石以及添加WC、TiC粉末等可在高能激光束下保护金刚石,减少金刚石的烧蚀和石墨化现象;进一步添加Co、Ti等元素可改善合金涂层的流动性,增强其与金刚石的结合力,提高涂层硬度,使其平均显微硬度达到HV 257.85,为基材显微硬度HV 170.40的1.51倍。通过添加镀Ni金刚石和增强相,可有效提高合金涂层的硬度和耐磨性能,同时提高45钢表面耐磨性和使用寿命。

     

  • 图  1  熔覆材料混合粉末形貌

    Figure  1.  Morphology of mixed powder of cladding material

    图  2  合金涂层截面宏观形貌

    Figure  2.  Macro morphologies of alloy coating cross-section

    图  3  金刚石结合界面形貌

    Figure  3.  Diamond bonding interface morphology

    图  4  条件2下合金涂层黏结相的微观组织及元素分析

    Figure  4.  Microstructure and elemental analysis of bonding phase in alloy coating under condition 2

    图  5  条件2下涂层横截面的宏观、微观形貌及过渡层EDS线扫描分析和热影响区SEM形貌

    Figure  5.  Macro and micro morphology of coating cross-section, EDS line scanning analysis of transition layer and SEM morphology of heat affected zone under condition 2

    图  6  条件2下涂层的显微硬度分布

    Figure  6.  Microhardness distribution of sample under condition 2

    图  7  合金涂层摩擦后的宏观形貌及元素分布

    Figure  7.  Macro morphology and element distribution of alloy coating after friction

    表  1  45钢化学成分

    Table  1.   Chemical compositions of 45 steel

    元素 质量分数 ω1 / %
    C 0.420~0.500
    Mn 0.500~0.800
    Si 0.170~0.370
    Cr ≤0.250
    Mo 0.500~0.800
    Ni ≤0.250
    P ≤0.035
    Fe 余量
    下载: 导出CSV

    表  2  激光熔覆合金粉末成分配比

    Table  2.   Composition ratio of laser cladding alloy powder

    成分 质量分数 ω2 / %
    CuSn10 85
    TiC 1
    Co 2
    WC 2
    镀Ni金刚石 10
    下载: 导出CSV

    表  3  激光熔覆工艺参数

    Table  3.   Laser cladding parameters

    条件 熔覆功率
    P / W
    送粉速率
    v / (r·min−1)
    氩气流量
    qv / (L·min−1)
    搭接率
    η / %
    1 700 2.0 6 30
    2 850 2.0 6 30
    3 850 2.5 6 30
    下载: 导出CSV
  • [1] 马玉山, 何涛, 常占东, 等. 45钢阀杆失效机制分析 [J]. 有色矿冶, 2019, 35(3): 33-35,53. doi: 10.3969/j.issn.1007-967X.2019.03.009

    MA Yushan, HE Tao, CHANG Zhandong, et al. Analysis of failure mechanism of 45 steel value rod [J]. Non-Ferrous Mining and Metallurgy, 2019, 35(3): 33-35,53. doi: 10.3969/j.issn.1007-967X.2019.03.009
    [2] 吕壮. 在45钢上电火花沉积立体结构自润滑涂层及其摩擦磨损性能的研究 [D]. 青岛: 青岛科技大学, 2023.

    LV Zhuang. Study on the friction and wear properties of self-lubricating coating with three-dimensional structure deposited on 45 steel by electric spark deposition [D]. Qingdao: Qingdao University of Science & Technology, 2023.
    [3] 刘晓玲. 机械设备金属材料的磨损失效及安全防范策略 [J]. 世界有色金属, 2021(17): 27-28. doi: 10.3969/j.issn.1002-5065.2021.17.014

    LIU Xiaoling. Wear failure and safety prevention strategy of metal materials of mechanical equipment [J]. World Nonferrous Metals, 2021(17): 27-28. doi: 10.3969/j.issn.1002-5065.2021.17.014
    [4] 左俊文. 超音速火焰喷涂碳化钨陶瓷涂层相结构与性能研究 [D]. 青岛: 山东科技大学, 2013.

    ZUO Junwen. Study on the phase structures and properties of WC-cermet coatins sprayed via HCAF [D]. Qingdao: Shandong University of Science and Technology, 2013.
    [5] 李富梅. 机械设备金属材料的磨损失效及安全防范策略 [J]. 世界有色金属, 2023(12): 176-178. doi: 10.3969/j.issn.1002-5065.2023.12.057

    LI Fumei. Wear and failure of metal materials in mechanical equipment and safety prevention strategies [J]. World Nonferrous Metals, 2023(12): 176-178. doi: 10.3969/j.issn.1002-5065.2023.12.057
    [6] DE G K, GEESINK R, KLEIN C P, et al. Plasma sprayed coatings of hydroxylapatite [J]. Journal of Biomedical Materials Research, 1987, 21(12): 1375-1381. doi: 10.1002/jbm.820211203
    [7] ANG A S M, BERND C C. A review of testing methods for thermal spray coatings [J]. International Materials Reviews, 2014, 59(4): 179-223. doi: 10.1179/1743280414Y.0000000029
    [8] 王龙虎, 郭宁, 陈得润, 等. 奥氏体不锈钢堆焊层焊接缺陷分析及改进措施 [J]. 铸造技术, 2023, 44(12): 1-5. doi: 10.16410/j.issn1000-8365.2023.2323

    WANG Longhu, GUO Ning, CHEN Derun, et al. Analysis of welding defects of austenitic stainless steel surfacing layers and improvement measures [J]. Foundry Technology, 2023, 44(12): 1-5. doi: 10.16410/j.issn1000-8365.2023.2323
    [9] 崔成梅. 42CrMo钢离子氮化研究 [J]. 热加工工艺, 2014, 43(8): 145-149. doi: 10.14158/j.cnki.1001-3814.2014.08.043

    CUI Chengmei. Study on plasma nitriding of 42CrMo steel [J]. Hot Working Technology, 2014, 43(8): 145-149. doi: 10.14158/j.cnki.1001-3814.2014.08.043
    [10] 刘颖波. 45钢表面激光熔覆Stellite 6/WC梯度复合涂层工艺、组织与性能研究 [D]. 兰州: 兰州理工大学, 2023.

    LIU Yingbo. Research on the technology and microstructure and properties of Stellite 6/WC gradient composite coatings by laser cladding on the surface of 45 steel [D]. Lanzhou: Lanzhou University of Technology, 2023.
    [11] 赵文雨. 2Cr12MoV表面激光熔覆Stellite 6涂层的组织及性能研究 [D]. 上海: 上海交通大学, 2015.

    ZHAO Wenyu. Research on microstructure and properties of Stellite 6 coatings by laser cladding on 2Cr12MoV [D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [12] ARIF Z U, KHALID M Y, AI R A, et al. Laser deposition of high-entropy alloys: A comprehensive review [J]. Optics & Laser Technology, 2022, 145: 107447. doi: 10.1016/j.optlastec.2021.107447
    [13] 韩文静, 宋进朝, 刘学功, 等. 煤矿机械应用激光熔覆技术的研究与实践 [J]. 电镀与精饰, 2016, 38(8): 18-22. doi: 10.3969/j.issn.1001-3849.2016.08.005

    HAN Wenjing, SONG Jinchao, LIU Xuegong, et al. Research and practice of laser cladding technology applied on coal mining machinery in China [J]. Plating and Finishing, 2016, 38(8): 18-22. doi: 10.3969/j.issn.1001-3849.2016.08.005
    [14] 张剑华. 采煤设备维修应用表面工程技术的研究与实践 [J]. 煤炭学报, 2011, 36(S1): 172-176. doi: 10.13225/j.cnki.jccs.2011.s1.036

    ZHANG Jianhua. Research and practice of surface engineering technology applications on coal mining equipment maintenance [J]. Journal of China Coal Society, 2011, 36(S1): 172-176. doi: 10.13225/j.cnki.jccs.2011.s1.036
    [15] 韩凯. 金刚石钎焊工具的制备及性能研究 [D]. 长沙: 湖南大学, 2022.

    HAN Kai. Preparation and properties of brazed diamond tools [D]. Changsha: Hunan University, 2022.
    [16] 马宇. H13钢表面激光熔覆改性组织性能研究 [D]. 沈阳: 东北大学, 2014.

    MA Yu. Surface modification of H13 steel by laser cladding [D]. Shenyang: Northeastern Unversity, 2014.
    [17] 谢子欣. 紫铜表面等离子熔覆WC增强Co基合金层制备及性能研究 [D]. 上海: 上海大学, 2021.

    XIE Zixin. Preparation and properties of plasma cladding WC strengthening Co-based alloy on copper surface [D]. Shanghai: Shanghai University, 2021.
    [18] 杜全斌, 王蕾, 赵伟伟, 等. 激光增材制造金刚石工具的研究现状与展望 [J]. 金属加工(热加工), 2025(3): 17-29. doi: 10.3969/j.issn.1674-165X.2025.03.003

    DU Quanbin, WANG Lei, ZHAO Weiwei, et al. Research status and prospect of laser additive manufacturing of diamond tools [J]. MW Metal Forming, 2025(3): 17-29. doi: 10.3969/j.issn.1674-165X.2025.03.003
    [19] 刘敬明. 大面积化学气相沉积金刚石自支撑膜氧化性能的研究 [D]. 北京: 北京科技大学, 2002.

    LIU Jingming. Oxidation properties of large area CVD free-standing diamond films [D]. Beijing: University of Science and Technology Beijing, 2002.
    [20] MA Q, PENG Y B, CHEN Y Q, et al. Quantitative investigation of thermal evolution and graphitisation of diamond abrasives in powder bed fusion-laser beam of metal-matrix diamond composites [J]. Virtual and Physical Prototyping, 2023, 18(1): 1-16. doi: 10.1080/17452759.2022.2121224
    [21] WU Q P, OU Y, Wang Y, et al. Precision grinding of engineering ceramic based on the electrolytic dressing of a multi-layer brazed diamond wheel [J]. Diamond and Related Materials, 2019, 100: 1-12. doi: 10.1016/j.diamond.2019.107552
    [22] 朱晨颖, 孙志鹏, 王宇. 感应钎涂金刚石/镍基合金复合涂层的性能 [J]. 焊接学报, 2022, 43(2): 106-112,120. doi: 10.12073/j.hjxb.20210521003

    ZHU Chenying, SUN Zhipeng, WANG Yu. Properties of induction brazing diamong/Ni-based alloy composite coating [J]. Transactions of the China Welding Institution, 2022, 43(2): 106-112,120. doi: 10.12073/j.hjxb.20210521003
    [23] ZHOU Z, LI S, GAO X. Numerical modeling of thermal behavior of melt pool in laser additive manufacturing of Ni-based diamond tools [J]. Ceramics International, 2022, 48(10): 14876-14890. doi: 10.1016/j.ceramint.2022.02.024
    [24] 肖小军, 刘允中, 程文, 等. 激光选区熔化成形含钛6061铝合金的显微组织与力学性能 [J]. 材料工程, 2023, 51(5): 36-45. doi: 10.11868/j.issn.1001-4381.2021.001013

    XIAO Xiaojun, LIU Yunzhong, CHENG Wen, et al. Microstructure and mechanical property of titanium-containing 6061 aluminum alloy prepared by selective laser melting [J]. Journal of Material Engineering, 2023, 51(5): 36-45. doi: 10.11868/j.issn.1001-4381.2021.001013
    [25] REYES M, NEVILLE A. Degradation mechanisms of Co-based alloy and WC metal–matrix composites for drilling tools offshore [J]. Wear, 2003, 255(7): 1143-1156. doi: 10.1016/S0043-1648(03)00151-0
    [26] DILAWARY S A A, MOTALLEBZADEH A, PAKSOY A H, et al. Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit [J]. Surface and Coatings Technology, 2017, 317: 110-116. doi: 10.1016/j.surfcoat.2017.03.051
    [27] DILAWARY S A A, MOTALLEBZADEH A, AFZAL M, et al. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance [J]. Optics and Laser Technology, 2018, 101: 404-412. doi: 10.1016/j.optlastec.2017.11.038
    [28] 邵延凡, 王泽华, 李潇, 等. 双相不锈钢表面激光熔覆钴基合金组织和性能研究 [J]. 表面技术, 2020, 49(4): 299-305. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.035

    SHAO Yanfan, WANG Zehua, LI Xiao, et al. Microstructure and properties of laser cladding Co-based alloys on duplex stainless steel [J]. Surface Technology, 2020, 49(4): 299-305. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.035
    [29] 罗亮斌, 梁国星, 刘东刚, 等. 42CrMo钢表面激光熔覆钴基金刚石耐磨层组织及性能 [J]. 表面技术, 2024, 53(5): 96-107. doi: 10.16490/j.cnki.issn.1001-3660.2024.05.010

    LUO Liangbin, LIANG Guoxing, LIU Donggang, et al. Microstructure and properties of laser cladding Co-based diamond wear resistant layer on 42CrMo steel surface [J]. Surface Technology, 2024, 53(5): 96-107. doi: 10.16490/j.cnki.issn.1001-3660.2024.05.010
    [30] 孙海东. 铁碳马氏体的孪晶结构和硬化机理研究 [D]. 秦皇岛: 燕山大学, 2023.

    SUN Haidong. Investigation on the twinned substructure and hardening mechanism of Fe-C martensite [D]. Qinghuangdao: Yanshan University, 2023.
    [31] 蔡志海, 秦航, 柳建, 等. 中锰铁基合金激光熔覆层组织性能研究 [J]. 应用激光, 2018, 38(5): 726-729. doi: 10.14128/j.cnki.al.20183805.726

    CAI Zhihai, QIN Hang, LIU Jian, et al. Research of microstructure and performance of laser cladding Fe-based medium manganses alloy [J]. Applied Laser, 2018, 38(5): 726-729. doi: 10.14128/j.cnki.al.20183805.726
    [32] 庞爱红, 孙贵乾, 董俊言, 等. 激光熔覆金刚石-金属耐磨涂层的组织和性能 [J]. 金刚石与磨料磨具工程, 2023, 43(4): 514-522. doi: 10.13394/j.cnki.jgszz.2023.0127

    PANG Aihong, SUN Guiqian, DONG Junyan, et al. Microstructure and properties of laser cladding diamond-metal wear-resistant coating [J]. Diamond & Abrasives Engineering, 2023, 43(4): 514-522. doi: 10.13394/j.cnki.jgszz.2023.0127
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2024-08-07
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回