CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC衬底精密抛光分子动力学模拟研究进展

张佳誉 孟二超 孙建林 季建忠

张佳誉, 孟二超, 孙建林, 季建忠. SiC衬底精密抛光分子动力学模拟研究进展[J]. 金刚石与磨料磨具工程, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070
引用本文: 张佳誉, 孟二超, 孙建林, 季建忠. SiC衬底精密抛光分子动力学模拟研究进展[J]. 金刚石与磨料磨具工程, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070
ZHANG Jiayu, MENG Erchao, SUN Jianlin, JI Jianzhong. Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070
Citation: ZHANG Jiayu, MENG Erchao, SUN Jianlin, JI Jianzhong. Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070

SiC衬底精密抛光分子动力学模拟研究进展

doi: 10.13394/j.cnki.jgszz.2024.0070
详细信息
    通讯作者:

    孟二超,男,1984年生,博士,讲师。主要研究方向:半导体材料精密加工、新型能源材料设计制备。E-mail:mengec@ustb.edu.cn

    孙建林,男,1962年生,博士,教授。主要研究方向:材料成形摩擦、磨损与润滑理论、半导体芯片磨抛液、量子化学计算及分子动力学模拟等。E-mail:sjl@ustb.edu.cn

  • 中图分类号: TN305.2

Advance on molecular dynamics simulations of precision polishing of SiC

  • 摘要: 化学机械抛光(chemical mechanical polishing,CMP)是SiC衬底平坦化的关键技术,目前针对CMP工艺已有大量研究,但磨粒、溶液介质与SiC表面协同作用的机理并不明确。分子动力学(molecular dynamics,MD)模拟是基于牛顿运动定律和量子力学原理,用于揭示物质微观结构和性质之间相互作用的模拟方法,目前被广泛应用于SiC表面去除机理研究。首先分析SiC精密抛光MD模拟常用的势函数,并总结其应用领域,然后对现有的SiC化学机械抛光MD模拟研究进行整合分析。结果表明: Tersoff势函数在机械行为方面的研究中应用较多,而研究SiC表面化学反应和吸附行为使用ReaxFF较多。SiC衬底精密抛光的MD模拟主要分为3类:SiC材料性能、磨粒磨削、SiC表面化学反应。目前大部分研究集中于磨粒与SiC表面的机械行为作用,而对化学反应机理的研究相对较少。未来研究的重点在于利用ReaxFF通过MD模拟研究SiC在各种条件下的反应机理,构建更多势函数以适应不同抛光条件,建立综合模型考虑多种因素对表面相互作用的影响。

     

  • 图  1  3C-SiC纳米压痕的MD模型[58]

    Figure  1.  MD model of nanoindentation on 3C-SiC[58]

    图  2  多种金刚石磨粒磨削MD模拟示意图[69]

    Figure  2.  Schematic diagram of MD simulated grinding with various diamond abrasive grains[69]

    图  3  固结磨粒纳米磨削MD模拟示意图[78]

    Figure  3.  Schematic diagram of consolidated abrasive nano-grinding MD simulation[78]

    图  4  纳米金刚石抛光单晶SiC的模型(·OH水溶液)[84]

    Figure  4.  Model of nanodiamond polishing single-crystal SiC (in ·OH aqueous solution) [84]

    图  5  6H-SiC和H2O2溶液3D化学模型[83]

    Figure  5.  3D chemical model of 6H-SiC and H2O2 aqueous solution[83]

    图  6  H2O / 6H-SiC接触模型示意图[94]

    Figure  6.  Schematic diagram of H2O / 6H-SiC contact model[94]

    图  7  SiC和醇水溶剂体系模拟示意图[97]

    Figure  7.  Schematic diagram of SiC and alcohol solvent system simulation[97]

    表  1  CMP协同增效方式对比

    Table  1.   Comparison of synergistic enhancement modes in CMP

    参考文献 协同方式 抛光液成分 抛光效果 备注
    材料去除率
    RMRR / (μm·h−1
    表面粗糙
    度 / nm
    文献[19] Fenton反应,MRF,
    半固结磨料抛光
    Fe3O4,H2O2,3 μm
    金刚石
    0.796 Rt = 9.12 将Fe3O4同时作为磁性颗粒和固相催化剂嵌入弹性抛光垫,在同等条件下相较于其他工艺,材料去除率提高了33%
    文献[20] 复合磨粒,ECMP,PCMP PS / CeO2,核壳磨料,CeO2-TiO2,光催化剂 1.109 Ra = 0.74 PS是一种新型异质结构聚苯乙烯,光催化剂被固定于钛网上
    文献[21] 湿法氧化,高温
    退火
    碱性SiO2胶体 Rq = 0.15 1 100 ℃下湿法氧化1 h,生成SiO2薄膜后抛光去除速度很快,抛光后在1 300 ℃的高温感应加热石墨炉中退火3 h
    文献[22] 超声振动辅助
    氧化,PAP
    CeO2磨粒,电解液为1%的NaCl溶液 11.250 Ra = 0.46 超声波振动辅助可以加快SiC表面的氧化速度,提高整体抛光速度
    文献[23] PCMP,ECMP P25型TiO2,H2O2,SiO2 1.18 Ra = 0.22 通过外电路施加一个阳极偏压,使光生电子经由外电路迁移至阴极表面,抑制电子e和空穴h + 的复合
    文献[24] 混合磨粒,PCMP 自改性金刚石磨粒,TiO2-石墨烯浆料 4.9 Sa = 0.72 金刚石磨料具有多孔结构,石墨烯和TiO2的结合与使用传统CMP工艺相比,去除效率提高了3倍
    文献[25] 混合磨粒,PCMP Al2O3 / ZrO2混合磨粒,H2O2 0.694 Ra = 0.489 采用高机械球磨法制备混合磨粒,ZrO2表面的电子在紫外线照射下产生跃迁,促进·OH的产生
    下载: 导出CSV

    表  2  SiC抛光常用势函数对比

    Table  2.   Comparison of potential functions for SiC polishing

    势函数 特点 主要模拟领域 模拟研究现状
    Tersoff 势函数 描述半导体、金属和碳等材料共价键结合的键级势,已经针对SiC材料开发了一系列Tersoff势函数版本 热学[37]、力学[38]、加工制备[39]、疲劳 / 冲击损
    [40-42]
    广泛应用于各种场景下SiC物理性能研究的MD模拟中且计算准确度较高
    Tersoff / ZBL
    势函数
    描述了Tersoff电位的短程相互作用,从而可以更准确地描述SiC的平衡特性和短程原子碰撞 辐照损伤[43-44]、离子注入[45] 用于模拟小体系不同条件下的SiC物理性能、结构变化,常被应用于SiC辐照损伤和离子注入模拟领域
    ABOP 势函数 可准确反映SiC原子间离子键和共价键的相互作用,允许考虑化学键的形成和断裂 力学[46]、离子注入[47]、加工制备[48] 广泛应用于3C-SiC的相关MD模拟,尤其是对物理化学性能方面的模拟研究有着较高的精确度
    Vashishta 势函数 库仑、空间排斥和其他相互作用包含在其双体势位部分;其三体势部分来自Stillinger-Weber势,可以准确描述SiC共价键和离子键的弯曲和拉伸 热学[49]、电学[50]、力学[51]、加工制备[52]、疲劳 / 冲击损伤[53] 可以用于精确模拟计算SiC材料的结构能、结构转变和层错能等多种物理性能,首先用于模拟结晶和非晶行为,后来也被应用于机械性能、加工制备等模拟领域
    ReaxFF 基于第一性原理,模拟化学反应过程中键的形成和断裂,从而更好地捕捉分子间的相互作用 化学反应[54-55]、吸附反应[56-57] 广泛应用于SiC与不同物种间存在化学反应的模拟计算中,其对辅助抛光、催化氧化反应、表面吸附、摩擦化学等方面的模拟研究有着巨大的贡献
    下载: 导出CSV

    表  3  SiC抛光机理研究总结

    Table  3.   Summary of research on polishing mechanism of SiC

    方法 侧重点 反应势函数 SiC类型 结论
    纳米压痕 位错非晶态转变机理[58-61] Vashishta,
    Tersoff
    3C-SiC
    4H-SiC
    6H-SiC
    非晶态转变和位错是材料变形的主要机制,位错环会演变为棱柱位错环
    游离磨粒磨削 磨粒压入深度对SiC变形的
    影响[54-56,65,71,74]
    ABOP, Tersoff, Tersoff /
    ZBL, Vashishta
    3C-SiC
    4H-SiC
    深度越大、温度越高,材料去除越多,但会提高表面粗糙度、增加裂纹
    磨粒运动方式对SiC变形的影响[54-55,70-71] ABOP, Tersoff, Tersoff /
    ZBL
    3C-SiC
    4H-SiC
    顺时针滚动组合振动有利于材料去除,磨料自转能消除应力降低表面与磨粒损伤
    SiC表面环境对其变形的
    影响[54,57,73]
    ABOP, Tersoff 3C-SiC
    4H-SiC
    SiC表面粗糙度不同会造成不同的运动模式,水环境下压力增大能降低摩擦系数
    固结磨料磨削 多磨粒干涉作用[78-80] ABOP
    Tersoff
    3C-SiC
    6H-SiC
    多磨粒之间的干涉作用主要受横向间距与切削深度的影响
    表面反应 氧化反应[84-85] ReaxFF 4H-SiC 磨料磨削能促进自由基与SiC的氧化反应
    溶剂吸附反应[93-95, 97-98] ReaxFF 4H-SiC
    6H-SiC
    3C-SiC
    H2O可以吸附在SiC表面并发生解离,金刚石磨粒也可能与SiC直接键合
    下载: 导出CSV
  • [1] CHEN X F, YANG X L, XIE X J, et al. Research progress of large size SiC single crystal materials and devices [J]. Light, Science & Applications, 2023, 12(1): 28. doi: 10.1038/s41377-022-01037-7
    [2] WANG J L. Recent research progress in preparation and application of silicon carbide [J]. Open Journal of Natural Science, 2022, 10: 220-226. doi: 10.12677/OJNS.2022.103028
    [3] WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers [J]. Advanced Materials Interfaces, 2023, 10(13): 2202369. doi: 10.1002/admi.202202369
    [4] TSAI M Y, WANG S M, TSAI C C, et al. Investigation of increased removal rate during polishing of single-crystal silicon carbide [J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1511-1520. doi: 10.1007/s00170-015-7023-4
    [5] HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies: Micromachines [J]. Micromachines, 2022, 13(10): 1752. doi: 10.3390/mi13101752
    [6] ZHANG Q X, PAN J S, ZHANG X W, et al. Tribological behavior of 6H–SiC wafers in different chemical mechanical polishing slurries [J]. Wear, 2021, 472 / 473: 203649. doi: 10.1016/j.wear.2021.203649
    [7] 路家斌, 曹纪阳, 邓家云, 等. Fe3O4特性对单晶SiC固相芬顿反应研磨丸片性能的影响 [J]. 金刚石与磨料磨具工程, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008

    LU Jiabin, CAO Jiyang, DENG Jiayun, et al. Effect of Fe3O4 characteristics on properties of solid-phase Fenton reaction lapping pellets for single-crystal SiC [J]. Diamond & Abrasives Engineering, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008
    [8] GAO B, GUO D, ZHANG X, et al. Picosecond laser-assisted chemical mechanical polishing (CMP): Aiming at the Si-face of single-crystal 6H-SiC wafer [J]. ECS Journal of Solid State Science and Technology, 2021, 10(4): 044008. doi: 10.1149/2162-8777/abf726
    [9] XIE X Z, PENG Q F, CHEN G P, et al. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process [J]. Ceramics International, 2021, 47(10, Part A): 13322-13330. doi: 10.1016/j.ceramint.2021.01.188
    [10] 路家斌, 熊强, 阎秋生, 等. 6H-SiC单晶紫外光催化抛光中光照方式和磨料的影响 [J]. 金刚石与磨料磨具工程, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006

    LU Jiabin, XIONG Qiang, YAN Qiusheng, et al. Effects of lights modes and abrasives on UV-photocatalysis assisted polishing of 6H-SiC single crystal [J]. Diamond & Abrasives Engineering, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006
    [11] GAO B, ZHAI W J, ZHAI Q, et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency [J]. ECS Journal of Solid State Science and Technology, 2019, 8(11): 677-684. doi: 10.1149/2.0031911jss
    [12] LUO Y R, XIONG Q, LU J B, et al. Chemical mechanical polishing exploiting metal electrochemical corrosion of single-crystal SiC [J]. Materials Science in Semiconductor Processing, 2022, 152: 107067. doi: 10.1016/j.mssp.2022.107067
    [13] 王磊, 吴润泽, 牛林, 等. 碳化硅晶体电化学机械抛光工艺研究 [J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029

    WANG Lei, WU Runze, NIU Lin, et al. Study on electrochemical mechanical polishing process of silicon carbide crystal [J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
    [14] YANG X Z, YANG X, GU H Y, et al. Efficient and slurryless ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers [J]. Ceramics International, 2022, 48(6): 7570-7583. doi: 10.1016/j.ceramint.2021.11.301
    [15] YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface [J]. Electrochemistry Communi-cations, 2019, 100: 1-5. doi: 10.1016/j.elecom.2019.01.012
    [16] WU Y S, PAN J S, WANG H, et al. Study of corrosion rate control mechanism based on magnetorheological electro-Fenton composite polishing of single-crystal GaN wafers [J]. Journal of Solid State Electrochemistry, 2023, 27(8): 2163-2176. doi: 10.1007/s10008-023-05468-z
    [17] DENG J Y, LU J B, YAN Q S, et al. Preparation and polishing properties of water-based magnetorheological chemical finishing fluid with high catalytic activity for single-crystal SiC [J]. Journal of Intelligent Material Systems and Structures, 2020, 32(13): 1441-1451. doi: 10.1177/1045389X20975503
    [18] 梁华卓, 付有志, 何俊峰, 等. 单晶SiC基片的磁流变化学复合抛光 [J]. 金刚石与磨料磨具工程, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108

    LIANG Huazhuo, FU Youzhi, HE Junfeng, et al. Magnetorheological chemical compound polishing of single crystal SiC substrate [J]. Diamond & Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
    [19] HU D, LI H L, LU J B, et al. Study on heterogeneous Fenton reaction parameters for polishing single-crystal SiC using magnetorheological elastomers polishing pads [J]. Smart Materials and Structures, 2023, 32(2): 025003. doi: 10.1088/1361-665X/acacd8
    [20] GAO B, ZHAI W J, ZHAI Q, et al. Novel photoelectrochemically combined mechanical polishing technology for scratch-free 4H-SiC surface by using CeO2-TiO2 composite photocatalysts and PS / CeO2 core / shell abrasives [J]. Applied Surface Science, 2021, 570: 151141. doi: 10.1016/j.apsusc.2021.151141
    [21] SHI X D, LU Y Q, CHAUSSENDE D, et al. Wet-oxidation-assisted chemical mechanical polishing and high-temperature thermal annealing for low-loss 4H-SiC integrated photonic devices [J]. Materials, 2023, 16(6): 2324. doi: 10.3390/ma16062324
    [22] 张晨. SiC单晶超声辅助电解液等离子体抛光仿真及实验研究 [D]. 西安: 西安理工大学, 2023.

    ZHANG Chen. Simulation and experimental study on ultrasonic-assisted electrolyte plasma polishing of SiC single crystal [D]. Xi'an: Xi'an University of Technology, 2023.
    [23] 何艳, 苑泽伟, 段振云, 等. 单晶SiC的电助光催化抛光及去除机理 [J]. 中国机械工程, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005

    HE Yan, YUAN Zewei, DUAN Zhenyun, et al. Electrical enhanced photocatalysis polishing and removal mechanism for single crystal SiC [J]. China Mechanical Engineering, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005
    [24] TSAI M Y, HOO Z T. Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO2 slurries [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1519-1530. doi: 10.1007/s00170-019-04223-x
    [25] WANG W T, ZHANG B G, SHI Y H, et al. Improved chemical mechanical polishing performance in 4H-SiC substrate by combining novel mixed abrasive slurry and photocatalytic effect [J]. Applied Surface Science, 2022, 575: 151676. doi: 10.1016/j.apsusc.2021.151676
    [26] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566-5568. doi: 10.1103/PhysRevB.39.5566
    [27] WANG J, LU C, WANG Q, et al. Understanding large plastic deformation of SiC nanowires at room temperature [J]. EPL(Europhysics Letters), 2011, 95(6): 63003-1-63003-5. doi: 10.1209/0295-5075/95/63003
    [28] JIN E Z, DU S Y, LI M, et al. Influence of helium atoms on the shear behavior of the fiber / matrix interphase of SiC / SiC composite [J]. Journal of Nuclear Materials, 2016, 479: 504-514. doi: 10.1016/j.jnucmat.2016.07.041
    [29] LIN K X, ZENG M, CHEN H M, et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites [J]. International Journal of Mechanical Sciences, 2022, 231: 107580. doi: 10.1016/j.ijmecsci.2022.107580
    [30] DEVANATHAN R, RUBIA T D D L, WEBER W J. Displacement threshold energies in β-SiC [J]. Journal of Nuclear Materials, 1998, 253(1/2/3): 47-52. doi: 10.1016/S0022-3115(97)00304-8
    [31] BRENNER D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990, 42(15): 9458-9471. doi: 10.1103/PhysRevB.42.9458
    [32] LI W H, YAO X H. The spallation of single crystal SiC: The effects of shock pulse duration [J]. Computational Materials Science, 2016, 124: 151-159. doi: 10.1016/j.commatsci.2016.07.028
    [33] VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: A molecular-dynamics study of structural correlations [J]. Physical Review B, 1990, 41(17): 12197-12209. doi: 10.1103/PhysRevB.41.12197
    [34] VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide [J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
    [35] SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions [J]. NPJ Computational Materials, 2016, 2(1): 15011. doi: 10.1038/npjcompumats.2015.11
    [36] NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I [J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. doi: 10.1021/jp306391p
    [37] DONG X Y, SHIN Y C. Predictions of thermal conductivity and degradation of irradiated SiC / SiC composites by materials-genome-based multiscale modeling [J]. Journal of Nuclear Materials, 2018, 512: 268-275. doi: 10.1016/j.jnucmat.2018.10.021
    [38] NIU X M, BIAN J, CHEN X H, et al. Molecular dynamics simulation on PyC interfacial failure mechanism and shear strength of SiC / SiC composites [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(8): 85008. doi: 10.1088/1361-651X/ac2478
    [39] WANG H X, GAO S, KANG R K, et al. Mechanical load-induced atomic-scale deformation evolution and mechanism of SiC polytypes using molecular dynamics simulation [J]. Nanomaterials, 2022, 12(14): 2489. doi: 10.3390/nano12142489
    [40] WANG R Q, HAN J B, MAO J X, et al. A molecular dynamics based cohesive zone model for interface failure under monotonic tension of 3D four direction SiCf / SiC composites [J]. Composite Structures, 2021, 274: 114397. doi: 10.1016/j.compstruct.2021.114397
    [41] AI T C, LIU J, QIU H J, et al. Removal behavior and performance analysis of defective silicon carbide in nano-grinding [J]. Precision Engineering, 2021, 72: 858-869. doi: 10.1016/j.precisioneng.2021.07.011
    [42] 涂睿, 李盈盈, 孔淑妍, 等. 分子动力学模拟辐照对碳化硅裂纹扩展过程的影响 [J]. 材料科学与工程学报, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003

    TU Rui, LI Yingying, KONG Shuyan, et al. Molecular dynamics simulation of lrradiation effects on the crackpropagation in 3C-SiC [J]. Journal of Materials Science and Engineering, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003
    [43] WALLACE J, CHEN D, WANG J, et al. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC / graphite interface [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 307: 81-85. doi: 10.1016/j.nimb.2013.02.036
    [44] LI Y Y, XIAO W, LI H L. Molecular dynamics simulation of C / Si ratio effect on the irradiation swelling of β-SiC [J]. Journal of Nuclear Materials, 2016, 480: 75-79. doi: 10.1016/j.jnucmat.2016.08.004
    [45] KANG Q, FANG X D, WU C, et al. Mechanical properties and indentation-induced phase transformation in 4H–SiC implanted by hydrogen ions [J]. Ceramics International, 2022, 48(11): 15334-15347. doi: 10.1016/j.ceramint.2022.02.067
    [46] LI Y Y, LI Y, XIAO W. Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations [J]. Nuclear Engineering and Technology, 2019, 51(3): 769-775. doi: 10.1016/j.net.2018.12.010
    [47] WU W L, HU Y, MENG X S, et al. Molecular dynamics simulation of ion-implanted single-crystal 3C-SiC nano-indentation [J]. Journal of Manufacturing Processes, 2022, 79: 356-368. doi: 10.1016/j.jmapro.2022.04.071
    [48] LIU B, LI X L, KONG R J, et al. A numerical analysis of ductile deformation during nanocutting of silicon carbide via molecular dynamics simulation [J]. Materials, 2022, 15(6): 2325. doi: 10.3390/ma15062325
    [49] KHAN T A, BURR P A, PAYNE D, et al. Molecular dynamic simulation on temperature evolution of SiC under directional microwave radiation [J]. Journal of Physics: Condensed Matter, 2022, 34(19): 195701. doi: 10.1088/1361-648X/ac553c
    [50] CHEN W, LI L S. The study of the optical phonon frequency of 3C-SiC by molecular dynamics simulations with deep neural network potential [J]. Journal of Applied Physics, 2021, 129(24): 244104. doi: 10.1063/5.0049464
    [51] UTKIN A V, FOMIN V M. Molecular dynamics study of silicon carbide properties under external dynamic loading [J]. AIP Conference Proceedings, 2017, 1983(1): 30018. doi: 10.1063/1.5007476
    [52] TRANH D T N, HOANG V V, HANH T T T. Modeling glassy SiC nanoribbon by rapidly cooling from the liquid: An affirmation of appropriate potentials [J]. Physica B: Condensed Matter, 2021, 608: 412746. doi: 10.1016/j.physb.2020.412746
    [53] FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading [J]. Mechanics of Materials, 2022, 164: 104139. doi: 10.1016/j.mechmat.2021.104139
    [54] DO T T, FANG T H. Deep insights into interaction behaviour and material removal of β-SiC wafer in nanoscale polishing [J]. Tribology International, 2023, 186: 108639. doi: 10.1016/j.triboint.2023.108639
    [55] BIAN Z T, GAO T H, GAO Y, et al. Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations [J]. Diamond and Related Materials, 2022, 129: 109368. doi: 10.1016/j.diamond.2022.109368
    [56] GAO S, WANG H X, HUANG H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. International Journal of Mechanical Sciences, 2023, 247: 108147. doi: 10.1016/j.ijmecsci.2023.108147
    [57] MENG B B, YUAN D D, XU S L. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation [J]. International Journal of Mechanical Sciences, 2019, 151: 724-732. doi: 10.1016/j.ijmecsci.2018.12.022
    [58] ZHU B, ZHAO D, ZHANG Z J, et al. Atomic study on deformation behavior and anisotropy effect of 3C-SiC under nanoindentation [J]. Journal of Materials Research and Technology, 2024, 28: 2636-2647. doi: 10.1016/j.jmrt.2023.12.081
    [59] SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: Formation of prismatic loops [J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
    [60] SZLUFARSKA I, KALIA R K, NAKANO A, et al. Atomistic processes during nanoindentation of amorphous silicon carbide [J]. Applied Physics Letters, 2005, 86(2): 21915. doi: 10.1063/1.1849843
    [61] TIAN Z G, CHEN X, XU X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045104. doi: 10.1088/2631-7990/abc26c
    [62] 王桂莲, 张广辉, 王治国, 等. 纳米抛光碳化硅压力对相变影响的分子动力学模拟 [J]. 机械设计与制造, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009

    WANG Guilian, ZHANG Guanghui, WANG Zhiguo, et al. Effect of pressure changes on the nano-polishing process of silicon carbide based on molecular dynamics [J]. Machinery Design & Manufacture, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009
    [63] 梁杰. 单晶SiC纳米压入 / 刻划研究[D]. 长沙: 长沙理工大学, 2022.

    LIANG Jie. Research on nanoindentation / nanoscratch of single crystal SiC [D]. Changsha: Changsha University of Science & Technology, 2022.
    [64] SHI X L, PAN G S, ZHOU Y, et al. Extended study of the atomic step-terrace structure on hexagonal SiC (0001) by chemical-mechanical planarization [J]. Applied Surface Science, 2013, 284: 195-206. doi: 10.1016/j.apsusc.2013.07.080
    [65] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001) [J]. Scientific Reports, 2015, 5(1): 8747. doi: 10.1038/srep08947
    [66] HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates [J]. Materials Science Forum, 2004, 457/458/459/460: 805-808. doi: 10.4028/www.scientific.net/MSF.457-460.805
    [67] LEE H S, JEONG H D. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces [J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 485-490. doi: 10.1016/j.cirp.2009.03.115
    [68] 唐爱玲, 苑泽伟, 唐美玲, 等. 磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响 [J]. 金刚石与磨料磨具工程, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053

    TANG Ailing, YUAN Zewei, TANG Meiling, et al. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP [J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
    [69] HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding of the effect of wear particles removal from the surface on grinding silicon carbide by molecular dynamics simulations [J]. Diamond and Related Materials, 2023, 137: 110150. doi: 10.1016/j.diamond.2023.110150
    [70] CHEN H, WANG C, CHEN J, et al. Changing torque-force synchronization condition for abrasive particle improves material removal during silicon carbide abrasive machining [J]. Tribology International, 2024, 192: 109247. doi: 10.1016/j.triboint.2023.109247
    [71] ZHOU Y Q, HUANG Y H, LI J M, et al. The effects of abrasive moving speed and motion mode on the thinning mechanism of SiC in three-body contact [J]. Physica Scripta, 2023, 98(11): 115403. doi: 10.1088/1402-4896/acfc6d
    [72] ZHOU Y Q, HUANG Y H, LI J M, et al. The effect of contact types on SiC polishing process [J]. Materials Science in Semiconductor Processing, 2022, 147: 106709. doi: 10.1016/j.mssp.2022.106709
    [73] ZHOU Y Q, HUANG Y H, LI J M, et al. Polishing process of 4H-SiC under different pressures in a water environment [J]. Diamond and Related Materials, 2023, 133: 109710. doi: 10.1016/j.diamond.2023.109710
    [74] HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding the role of surface mechanical properties in SiC surface machining [J]. Materials Science in Semiconductor Processing, 2023, 163: 107594. doi: 10.1016/j.mssp.2023.107594
    [75] WANG H Q, NIU F L, CHEN J P, et al. High efficiency polishing of silicon carbide by applying reactive non-aqueous fluids to fixed abrasive pads [J]. Ceramics International, 2022, 48(5): 7273-7282. doi: 10.1016/j.ceramint.2021.11.288
    [76] LUO Q F, LU J, XU X P. A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools [J]. Wear, 2016350/351: 99-106. doi: 10.1016/j.wear.2016.01.014
    [77] MURATA J, HAYAMA K, TAKIZAWA M. Environment-friendly electrochemical mechanical polishing using solid polymer electrolyte / CeO2 composite pad for highly efficient finishing of 4H-SiC (0001) surface [J]. Applied Surface Science, 2023, 625: 157190. doi: 10.1016/j.apsusc.2023.157190
    [78] WU Z H, ZHANG L C, YANG S Y, et al. Effects of grain size and protrusion height on the surface integrity generation in the nanogrinding of 6H-SiC [J]. Tribology International, 2022, 171: 107563. doi: 10.1016/j.triboint.2022.107563
    [79] ZHOU P, SHI X D, LI J, et al. Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process [J]. Ceramics International, 2019, 45(12): 14614-14624. doi: 10.1016/j.ceramint.2019.04.180
    [80] ZHOU P, ZHU N N, XU C Y, et al. Mechanical removal of SiC by multi-abrasive particles in fixed abrasive polishing using molecular dynamics simulation [J]. Computational Materials Science, 2021, 191: 110311. doi: 10.1016/j.commatsci.2021.110311
    [81] ISHIKAWA Y, MATSUMOTO Y, NISHIDA Y, et al. Surface treatment of silicon carbide using TiO2(IV) photocatalyst [J]. Journal of the American Chemical Society, 2003, 125(21): 6558-6562. doi: 10.1021/ja020359i
    [82] LIU W T, LU J B, XIONG Q, et al. Investigation on influence of polishing disc materials in UV-catalytic polishing of single crystal diamond [J]. Diamond and Related Materials, 2024, 141: 110678. doi: 10.1016/j.diamond.2023.110678
    [83] ZHOU Y, PAN G S, ZOU C L, et al. Planarization of SiC wafer using photo-catalyst incorporated pad [C] / / International Conference on Planarization / CMP Technology, Leuven Belgium: ICPT 2017: 165-170.
    [84] YUAN Z W, TANG M L, WANG Y, et al. Atomistic removal mechanisms of nano polishing single-crystal SiC in hydroxyl free radical aqueous solution [J]. Physica Scripta, 2023, 98(8): 085404. doi: 10.1088/1402-4896/acdbf0
    [85] HE Y, YUAN Z W, TANG M L, et al. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC [J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(24): 11464-11478. doi: 10.1177/09544062221117953
    [86] TOKUMURA M, MORITO R, HATAYAMA R, et al. Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: Dynamic change of hydroxyl radical concentration [J]. Applied Catalysis B: Environmental, 2011, 106(3): 565-576. doi: 10.1016/j.apcatb.2011.06.017
    [87] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
    [88] LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction [J]. Precision Engineering, 2018, 52: 221-226. doi: 10.1016/j.precisioneng.2017.12.011
    [89] LIANG H Z, LU J B, PAN J S, et al. Material removal process of single-crystal SiC in chemical-magnetorheological compound finishing [J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5/6/7/8): 2939-2948. doi: 10.1007/s00170-017-1098-z
    [90] LI X, WU X J, WU P F, et al. Effects of polishing media on the surface chemical and micromechanical properties of SiC [J]. Computational Materials Science, 2024, 233: 112753. doi: 10.1016/j.commatsci.2023.112753
    [91] YANG S Y, LI X L, ZHAO Y T, et al. MD simulation of chemically enhanced polishing of 6H-SiC in aqueous H2O2 [J]. Journal of Manufacturing Processes, 2023, 107: 515-528. doi: 10.1016/j.jmapro.2023.10.056
    [92] ZHOU Y Q, HUANG Y H, LI J M, et al. Investigation of the chemical action mechanism based on reactive force field in SiC chemical–mechanical polishing process [J]. Applied Surface Science, 2024, 646: 158927. doi: 10.1016/j.apsusc.2023.158927
    [93] MORISHITA T, KAYANUMA M, NAKAMURA T, et al. Cooperative reaction of hydrogen-networked water molecules at the SiC–H2O2 solution interface: Microscopic insights from Ab initio molecular dynamics [J]. The Journal of Physical Chemistry C, 2022, 126(30): 12441-12449. doi: 10.1021/acs.jpcc.2c02464
    [94] TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0 0 0 1 and 0 0 0 −1) with water molecules in nanoscale polishing [J]. Applied Surface Science, 2023, 607: 903-912. doi: 10.1016/j.apsusc.2022.155090
    [95] LUO Q F, LU J, JIANG F, et al. Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing [J]. Nanoscale, 2023, 15(38): 15675-15685. doi: 10.1039/D3NR02353B
    [96] ZHANG P F, ZHANG Y L. Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculations [J]. Materials Today Communications, 2021, 26: 102072. doi: 10.1016/j.mtcomm.2021.102072
    [97] CHEN H B, CHEN J P, WU J X, et al. ReaxFF molecular dynamics simulation and experimental validation about chemical reactions of water and alcohols on SiC surface [J]. Ceramics International, 2024, 50(3): 4332-4349. doi: 10.1016/j.ceramint.2023.11.070
    [98] SHEN J F, CHEN H B, CHEN J P, et al. Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries [J]. Ceramics International, 2023, 49(5): 7274-7283. doi: 10.1016/j.ceramint.2022.10.193
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  493
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-06-14
  • 录用日期:  2024-07-04
  • 网络出版日期:  2024-07-04
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回