CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钨过渡层热处理对微米晶金刚石涂层的影响

王海龙 丁晟 马莉 魏秋平

王海龙, 丁晟, 马莉, 魏秋平. 钨过渡层热处理对微米晶金刚石涂层的影响[J]. 金刚石与磨料磨具工程, 2025, 45(4): 448-457. doi: 10.13394/j.cnki.jgszz.2024.0063
引用本文: 王海龙, 丁晟, 马莉, 魏秋平. 钨过渡层热处理对微米晶金刚石涂层的影响[J]. 金刚石与磨料磨具工程, 2025, 45(4): 448-457. doi: 10.13394/j.cnki.jgszz.2024.0063
WANG Hailong, DING Sheng, MA Li, WEI Qiuping. Effect of heat treated tungsten interlayer on microcrystalline diamond coatings[J]. Diamond & Abrasives Engineering, 2025, 45(4): 448-457. doi: 10.13394/j.cnki.jgszz.2024.0063
Citation: WANG Hailong, DING Sheng, MA Li, WEI Qiuping. Effect of heat treated tungsten interlayer on microcrystalline diamond coatings[J]. Diamond & Abrasives Engineering, 2025, 45(4): 448-457. doi: 10.13394/j.cnki.jgszz.2024.0063

钨过渡层热处理对微米晶金刚石涂层的影响

doi: 10.13394/j.cnki.jgszz.2024.0063
基金项目: 国家“十四五”重点研究发展计划(2021YFB3701800);国家自然科学基金(52202056,52274370,52071345,51874370);广东省“十三五”重点研究开发项目(2020B01085001);湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047);湖南省自然基金资助项目(2023JJ40722);粉末冶金国家重点实验室自主课题(621022230)。
详细信息
    通讯作者:

    魏秋平,教授,博士。主要研究方向:薄膜材料和表面改性技术。E-mail:qiupwei@csu.edu.cn

  • 中图分类号: TG711

Effect of heat treated tungsten interlayer on microcrystalline diamond coatings

  • 摘要: 硬质合金基微米晶金刚石涂层存在的晶粒粗大和结合性能不佳等情况,影响其在精密加工领域中的应用。为改善硬质合金基微米晶金刚石涂层的结合性能并细化金刚石晶粒,采用蒸发法在硬质合金表面沉积钨过渡层,经热处理后采用热丝化学气相沉积法在其上方沉积金刚石涂层,研究不同热处理温度对钨过渡层结构及金刚石涂层形貌、质量和性能的影响。结果表明:蒸镀的钨过渡层呈现非晶结构,随着热处理温度升高,钨过渡层的结晶度升高并形成不同尺寸的“孤岛−沟壑”结构。SEM图像、X射线衍射图谱和拉曼光谱显示,经热处理后钨过渡层上生长的金刚石涂层晶粒尺寸变小,结晶度更高。900 ℃热处理30 min的钨过渡层表面“孤岛−沟壑”结构尺寸适中,均匀性最好,其上生长的金刚石涂层平均晶粒尺寸约为1.97 μm,平均摩擦系数最低;对应的摩擦副表面最平整,磨损率也明显降低。900和1 000 ℃热处理钨过渡层上的金刚石涂层结合性能相比无过渡层样品有显著提高,在600 N载荷下分别达到HF2和HF1级别。

     

  • 图  1  蒸镀钨过渡层前后的基体表面和截面SEM形貌及EDS图

    Figure  1.  Surface and cross section SEM morphologies of substrates before and after tungsten evaporation transition layer and EDS spectrum

    图  2  不同基体蒸镀钨后的XRD图谱

    Figure  2.  XRD pattern of tungsten interlayer on different substrates

    图  3  不同温度热处理后的样品表面XRD图谱

    Figure  3.  XRD pattern of tungsten interlayer after different heat treatment temperature

    图  4  蒸镀钨过渡层不同温度热处理后表面和部分截面SEM形貌

    Figure  4.  Surface and cross section SEM morphologies of tungsten interlayer after different heat treatment temperatures

    图  5  各金刚石涂层样品的表面SEM形貌

    Figure  5.  Surface SEM morphology of diamond coatings samples

    图  6  各样品的金刚石晶粒尺寸统计图

    Figure  6.  Statistical chart of diamond grain size for each sample

    图  7  各金刚石涂层样品的XRD图谱

    Figure  7.  XRD patterns of diamond coatings samples

    图  8  金刚石涂层样品的拉曼光谱

    Figure  8.  Raman spectra of diamond coatings samples

    图  9  金刚石涂层的压痕形貌

    Figure  9.  Rockwell indentation morphologies of diamond coatings

    图  10  金刚石涂层与摩擦副往复摩擦磨损后的磨痕形貌

    Figure  10.  Wear morphology of diamond coatings and frictional pairs after reciprocating friction and wear

    图  11  金刚石涂层样品的摩擦磨损测试曲线

    Figure  11.  Friction and wear test curve of diamond coatings

    表  1  蒸镀钨过渡层的热处理参数

    Table  1.   Heat treatment parameters of tungsten interlayer by evaporation

    样品 热处理
    温度 θ / ℃ 气氛
    YG8-W
    W73H700Ar / H2 = 30/20 sccm,
    (10 ± 0.2)kPa
    W83H800
    W93H900
    W103H1 000
    下载: 导出CSV

    表  2  金刚石涂层样品的高斯拟合拉曼峰信息

    Table  2.   Gaussian fitting Raman peaks information of diamond coatings samples

    样品金刚石峰 λ / cm−1残余应力 σ / GPaId / IGFWHM / cm−1
    YG8-D1 334.06−0.884.4314.67
    W73D1 336.65−2.353.3715.20
    W83D1 334.78−1.343.9913.72
    W93D1 335.32−1.803.8211.87
    W103D1 336.85−2.433.7810.01
    下载: 导出CSV

    表  3  金刚石涂层样品的摩擦磨损信息

    Table  3.   Friction and wear test information of diamond coatings

    样品 最大摩擦系数 μmax 平均摩擦系数 μavg 摩擦副磨损面情况 摩擦副磨损率 K / (mm3·N−1·m−1)
    YG8-D 0.349 0.071 破损 27.54 × 10−8
    W73D 0.382
    W83D 0.373 0.069 破损 16.99 × 10−8
    W93D 0.217 0.062 平整 5.28 × 10−8
    W103D 0.453 0.065 破损 23.98 × 10−8
    下载: 导出CSV
  • [1] CHEN T, XIANG J, GAO F, et al. Study on cutting performance of diamond-coated rhombic milling cutter in machining carbon fiber composites [J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9/10/11/12): 4731-4737. doi: 10.1007/s00170-019-03902-z
    [2] LIN Q, CHEN S, JI Z, et al. High-temperature wear behavior of micro- and ultrananocrystalline diamond films against titanium alloy [J]. Surface and Coatings Technology, 2021, 422: 127537. doi: 10.1016/j.surfcoat.2021.127537
    [3] WANG H, YANG J, SUN F. Cutting performances of MCD, SMCD, NCD and MCD/NCD coated tools in high-speed milling of hot bending graphite molds [J]. Journal of Materials Processing Technology, 2020, 276: 116401. doi: 10.1016/j.jmatprotec.2019.116401
    [4] SONG X, WANG H, WANG X, et al. Coupling effects of methane concentration and nitrogen addition level on morphologies and properties of MPCVD diamond films on WC-Co substrates [J]. Diamond and Related Materials, 2021, 117: 108487. doi: 10.1016/j.diamond.2021.108487
    [5] WANG H, WEBB T, BITLER J W. Study of thermal expansion and thermal conductivity of cemented WC–Co composite [J]. International Journal of Refractory Metals and Hard Materials, 2015, 49: 170-177. doi: 10.1016/j.ijrmhm.2014.06.009
    [6] 郭晓光, 刘涛, 翟昌恒, 等. 过渡金属作用下的金刚石石墨化机理研究 [J]. 机械工程学报, 2016, 52(20): 23-29. doi: 10.3901/JME.2016.20.023

    GUO Xiaoguang, LIU Tao, ZHAI Changheng, et al. Study on the mechanism of diamond graphite with the action of transition metals [J]. Journal of Mechanical Engineering, 2016, 52(20): 23-29. doi: 10.3901/JME.2016.20.023
    [7] 谷继腾, 杨扬, 唐永炳. 热处理工艺对硬质合金表面金刚石薄膜附着性能的影响 [J]. 集成技术, 2017, 6(4): 80-88. doi: 10.3969/j.issn.2095-3135.2017.04.009

    GU Jiteng, YANG Yang, TANG Yongbing. Effects of heat-treatment on the adhesive strength of diamond films coated on the cemented carbide substrates [J]. Journal of Intergration Technology, 2017, 6(4): 80-88. doi: 10.3969/j.issn.2095-3135.2017.04.009
    [8] WANG X, WANG C, HE W, et al. Co evolutions for WC–Co with different Co contents during pretreatment and HFCVD diamond film growth processes [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 469-486. doi: 10.1016/S1003-6326(18)64680-1
    [9] 潘秋丽, 张荣良. 以 Cr/CrSiN膜为过渡层在高钴硬质合金表面沉积金刚石薄膜 [J]. 金刚石与磨料磨具工程, 2023, 43(6): 698-703. doi: 10.13394/j.cnki.jgszz.2023.0004

    PAN Qiuli, ZHANG Rongliang. Depositing diamond film on high Co content cemented carbide using Cr/CrSiN film as an interlayer [J]. Diamond & Abrasives Engineering, 2023, 43(6): 698-703. doi: 10.13394/j.cnki.jgszz.2023.0004
    [10] ZHANG J, WANG X, SHEN B, et al. Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP [J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 285-292. doi: 10.1016/j.ijrmhm.2013.04.017
    [11] SHARIF U M, SEAH K H W, LI X P, et al. Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon [J]. Wear, 2004, 257(7/8): 751-759. doi: 10.1016/j.wear.2004.03.012
    [12] AJIKUMAR P K, GANESAN K, KUMAR N, et al. Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films [J]. Applied Surface Science, 2019, 469: 10-17. doi: 10.1016/j.apsusc.2018.10.265
    [13] 余寒, 夏鑫, 朱俊奎, 等. 籽晶种植及掺硼形核对硬质合金表面金刚石涂层的影响 [J]. 粉末冶金材料科学与工程, 2023, 28(4): 404-412. doi: 10.19976/j.cnki.43-1448/TF.2023035

    YU Han, XIA Xin, ZHU Junkui, et al. Effects of seeding and boron-doped nucleation on diamond coating of cemented carbide surface [J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 404-412. doi: 10.19976/j.cnki.43-1448/TF.2023035
    [14] ALI M, ÜRGEN M. Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations [J]. Applied Surface Science, 2011, 257(20): 8420-8426. doi: 10.1016/j.apsusc.2011.04.097
    [15] POULON-QUINTIN A, FAURE C, TEULÉ-GAY L, et al. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings [J]. Applied Surface Science, 2015, 331: 27-34. doi: 10.1016/j.apsusc.2015.01.050
    [16] XU Y, WANG T, CHEN B, et al. Interface design to tune stress distribution for high performance diamond/silicon carbide coated cemented carbide tools [J]. Surface and Coatings Technology, 2020, 397: 125975. doi: 10.1016/j.surfcoat.2020.125975
    [17] CHANDRAN M, HOFFMAN A. Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications [J]. Journal of Physics D: Applied Physics, 2016, 49: 213002. doi: 10.1088/0022-3727/49/21/213002
    [18] XU F, XU J H, YUEN M F, et al. Adhesion improvement of diamond coatings on cemented carbide with high cobalt content using PVD interlayer [J]. Diamond and Related Materials, 2013, 34: 70-75. doi: 10.1016/j.diamond.2013.01.012
    [19] YANG T, WEI Q, QI Y, et al. The diffusion behavior of carbon in sputtered tungsten film and sintered tungsten block and its effect on diamond nucleation and growth [J]. Diamond and Related Materials, 2015, 52: 49-58. doi: 10.1016/j.diamond.2014.12.009
    [20] GUO Z, DENG F, ZHANG L, et al. Fabrication and tribological properties of textured diamond coatings on WC-Co cemented carbide surfaces [J]. Ceramics International, 2021, 47(4): 5423-5431. doi: 10.1016/j.ceramint.2020.10.124
    [21] MA D, HEI H, ZHENG K, et al. Effects of TiMoTa nano-crystalline interlayer on nucleation, adhesion and tribological behaviors of diamond coating [J]. Ceramics International, 2023, 49(6): 9512-9522. doi: 10.1016/j.ceramint.2022.11.118
    [22] HSIEH C T, TING J M. Effect of growth conditions on the structure and properties of tungsten films prepared using a thermal evaporation process [J]. Journal of Vacuum Science & Technology A, 2007, 25(6): 1552-1556.
    [23] SHEN Y G, MAI Y W, MCBRIDE W E, et al. Oxygen-induced amorphous structure of tungsten thin films [J]. Applied Physics Letters, 1999, 75(15): 2211-2213. doi: 10.1063/1.124967
    [24] 郑子樵. 材料科学基础 [M]. 长沙: 中南大学出版社, 2013.

    ZHENG Ziqiao. Fundamentals of materials science [M]. Changsha: Central South University Press, 2013.
    [25] BOWDEN F P, SINGER K E. Surface self-diffusion of tungsten [J]. Nature, 1969, 222: 977-979. doi: 10.1038/222977b0
    [26] WEI Q P, YU Z M, MA L, et al. The effects of temperature on nanocrystalline diamond films deposited on WC–13wt.% Co substrate with W–C gradient layer [J]. Applied Surface Science, 2009, 256(5): 1322-1328. doi: 10.1016/j.apsusc.2009.06.091
    [27] RALCHENKO V G, SMOLIN A A, PEREVERZEV V G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diamond and Related Materials, 1995, 4: 754-758. doi: 10.1016/0925-9635(94)05299-9
    [28] GUILLEMET T, XIE Z Q, ZHOU Y S, et al. Stress and phase purity analyses of diamond films deposited through laser-assisted combustion synthesis [J]. ACS Applied Materials & Interfaces, 2011, 3(10): 4120-4125. doi: 10.1021/am201010h
    [29] VIDAKIS N, ANTONIADIS A, BILALIS N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. Journal of Materials Processing Technology, 2003, (143/144): 481-485. doi: 10.1016/S0924-0136(03)00300-5
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  822
  • HTML全文浏览量:  407
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-23
  • 录用日期:  2024-06-25
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回