CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向叶片根部光顺磨削的柔性磨具设计与性能

李明聪 田培森 黄云 鄢胜博 邹莱 王文玺

李明聪, 田培森, 黄云, 鄢胜博, 邹莱, 王文玺. 面向叶片根部光顺磨削的柔性磨具设计与性能[J]. 金刚石与磨料磨具工程, 2025, 45(4): 534-541. doi: 10.13394/j.cnki.jgszz.2024.0059
引用本文: 李明聪, 田培森, 黄云, 鄢胜博, 邹莱, 王文玺. 面向叶片根部光顺磨削的柔性磨具设计与性能[J]. 金刚石与磨料磨具工程, 2025, 45(4): 534-541. doi: 10.13394/j.cnki.jgszz.2024.0059
LI Mingcong, TIAN Peisen, HUANG Yun, YAN Shengbo, ZOU Lai, WANG Wenxi. Design and performance of compliant grinding tools for blade root smooth grinding[J]. Diamond & Abrasives Engineering, 2025, 45(4): 534-541. doi: 10.13394/j.cnki.jgszz.2024.0059
Citation: LI Mingcong, TIAN Peisen, HUANG Yun, YAN Shengbo, ZOU Lai, WANG Wenxi. Design and performance of compliant grinding tools for blade root smooth grinding[J]. Diamond & Abrasives Engineering, 2025, 45(4): 534-541. doi: 10.13394/j.cnki.jgszz.2024.0059

面向叶片根部光顺磨削的柔性磨具设计与性能

doi: 10.13394/j.cnki.jgszz.2024.0059
基金项目: 国家自然科学基金(52105430);中国博士后科学基金面上项目(2023M740398);中国航发自主创新专项资金(ZZCX-2022-019)。
详细信息
    作者简介:

    李明聪,男,1996年生,博士研究生。主要研究方向:整体叶盘全型面机器人磨抛专用磨具的设计及性能。E-mail:mingcongli@cqu.edu.cn

    通讯作者:

    黄云,男,1962年生,教授。主要研究方向:整体叶盘全型面机器人磨抛专用磨具的设计及性能。E-mail:yunhuang@samhida.com

  • 中图分类号: TG58; TG74; TH16

Design and performance of compliant grinding tools for blade root smooth grinding

  • 摘要: 小尺寸柔性磨具有助于解决以航空发动机叶片根部为代表的复杂结构件难加工部位的精密磨抛难题,但工件的弱导热性与柔性材料自身的弱热稳定性特质,使磨削热积累,从而制约磨具寿命与磨削性能。为此,提出在球头磨具中引入基于风扇叶片的增强换热结构以改善其传热性能,并基于多射流熔融3D打印方法制造磨具。通过数值模拟研究旋转方向、转速和强制冷空气速度对磨具传热机理的影响,且通过钛合金板材磨削实验对比所设计磨具与传统结构磨具的磨削性能。结果表明:内叶片结构有效地向磨具内腔引入高动量流体,增大磨具内腔压力并提高传热效率,最大降温幅度可达18.29%;在持续的磨削实验中,内叶片结构磨具具有更好的磨削性能一致性,可有效减轻连续磨削过程中热量积聚导致的柔性材料黏附,使磨具寿命延长40%。

     

  • 图  1  叶片和磨具的3D模型

    Figure  1.  3D models of blade and grinding tool

    图  2  区域划分和网格数的独立验证

    Figure  2.  Regional division and independent verification of grid number

    图  3  不同旋转方向的流场特性

    Figure  3.  Flow field characteristics in different rotating directions

    图  4  不同结构磨具的平均表面温度

    Figure  4.  Average surface temperature with different structural grinding tools

    图  5  不同转速下的表面平均温度

    Figure  5.  Average surface temperature at different rotational speeds

    图  6  不同磨具在不同转速下的表面温度分布

    Figure  6.  Surface temperature distribution of different tools at different rotational speeds

    图  7  不同冷风速度下的表面平均温度

    Figure  7.  Average surface temperature at different cold air velocity

    图  8  磨具的制备过程

    Figure  8.  Preparation process of tools

    图  9  磨削实验平台

    Figure  9.  grinding experimental set-up

    图  10  不同磨具在持续磨削过程中的磨削性能

    Figure  10.  Grinding performance of fifferent ginding tools during continuous grinding process

    图  11  不同磨具在持续磨削过程中的表面形貌

    Figure  11.  Surface morphology of different grinding tools undergoing continuous grinding

    图  12  持续磨削后磨具宏微观形貌

    Figure  12.  Macroscopic and microscopic of tools after continuous grinding

    图  13  不同结构对磨具失效形式的影响

    Figure  13.  Failure forms of tools under different conditions

    图  14  钛合金根部样件磨削实验平台及实验结果

    Figure  14.  Grinding experimental platform and experimental results of titanium alloy root samples

    表  1  磨削过程参数

    Table  1.   Parameters of experiment process

    参数 类型或取值
    金刚石磨料粒度代号 M36/54
    转速 n / (r·min−1) 9000
    进给速度 Vw / (mm·s−1) 0.3
    法向力 Fn / N 5
    工件材料 TC4, HRC 30
    下载: 导出CSV
  • [1] 段继豪, 安佳乐, 吴卓繁, 等. 航发叶片砂碟磨削接触特性及材料去除机理 [J]. 机械工程学报, 2023, 59(17): 349-360. doi: 10.3901/JME.2023.17.349

    DUAN Jihao, AN Jiale, WU Zhuofan, et al. Contact characteristics and material removal mechanism of abrasive disc grinding of aero-engine blade [J]. Journal of Mechanical Engineering, 2023, 59(17): 349-360. doi: 10.3901/JME.2023.17.349
    [2] LIU M, LI C, YANG M, et al. Mechanism and enhanced grindability of cryogenic air combined with biolubricant grinding titanium alloy[J]. Tribology International, 2023, 187: 108704.
    [3] LI M, HUANG Y, WANG W, et al. A novel 3D printed compliant ball-end grinding tool with crystal structure: Feasibility and performance analysis [J]. Materials & Design, 2024, 237: 112591. doi: 10.1016/j.matdes.2023.112591
    [4] PUŠAVEC F, GRGURAŠ D, KOCH M, et al. Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling [J]. CIRP Annals, 2019, 68(1): 73-76. doi: 10.1016/j.cirp.2019.03.016
    [5] 钱宁, 徐九华, 傅玉灿, 等. 面向绿色高效磨削的振荡热管砂轮磨削温度与强化传热分析 [J]. 机械工程学报, 2022, 58(15): 105-120. doi: 10.3901/JME.2022.15.105

    QIAN Ning, XU Jiuhua, FU Yucan, et al. Investigation on grinding temperature and heat transfer performance of oscillating grinding wheel for high-efficient green grinding [J]. Journal of Mechanical Engineering, 2022, 58(15): 105-120. doi: 10.3901/JME.2022.15.105
    [6] XIANG X, YU J, MEI C, et al. An internal cooling grinding wheel: From design to application [J]. Chinese Journal of Aeronautics, 2023, 36(11): 465-482. doi: 10.1016/j.cja.2023.02.024
    [7] GHEYNANI A R, AKBARI O A, ZARRINGHALAM M, et al. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 29(5): 1699-1723. doi: 10.1108/hff-07-2018-0368
    [8] GHETAN S, RAO P V. Comparison between sustainable cryogenic techniques and nano-MQL cooling mode in turning of nickel-based alloy [J]. Journal of Cleaner Production, 2019, 231: 1036-1049. doi: 10.1016/j.jclepro.2019.05.196
    [9] REDDY P P, GHOSH A. Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet [J]. Journal of Materials Processing Technology, 2016, 229: 329-337. doi: 10.1016/j.jmatprotec.2015.09.040
    [10] QIAN N, JIANG F, MARENGO M, et al. Thermal performance of a radial-rotating oscillating heat pipe and its application in grinding processes with enhanced heat transfer [J]. Applied Thermal Engineering, 2023, 233: 121213. doi: 10.1016/j.applthermaleng.2023.121213
    [11] TONG J, PENG R, SONG Q. A Cu-based ceramic porous abrasive ring with phyllotactic pattern in internal cooling grinding of Inconel 718 [J]. Journal of Materials Processing Technology, 2023, 315: 117890. doi: 10.1016/j.jmatprotec.2023.117890
    [12] PENG R, TONG J, TANG X, et al. Application of a pressurized internal cooling method in grinding inconel 718: Modeling-simulation and testing-validation [J]. International Journal of Mechanical Sciences, 2021, 189: 105985. doi: 10.1016/j.ijmecsci.2020.105985
    [13] MIZUTANI T, SATAKE U, ENOMOTO T. A study on a cooling method for bone grinding using diamond bur for minimally invasive surgeries [J]. Precision Engineering, 2021, 70: 155-163. doi: 10.1016/j.precisioneng.2021.01.010
    [14] LAN J, ZHANG Z, LIANG X, et al. Experimental and numerical investigation on thermal performance of data center via fan-wall free cooling technology [J]. Applied Thermal Engineering, 2023, 228: 120467. doi: 10.1016/j.applthermaleng.2023.120467
    [15] PENG C C, CHEN T Y. A recursive low-pass filtering method for a commercial cooling fan tray parameter online estimation with measurement noise [J]. Measurement, 2022, 205: 112193. doi: 10.1016/j.measurement.2022.112193
    [16] GALLONI E, PARISI P, MARIGNETTI F, et al. CFD analyses of a radial fan for electric motor cooling [J]. Thermal Science and Engineering Progress, 2018, 8: 470-476. doi: 10.1016/j.tsep.2018.10.003
    [17] ZHONG X L, CHAN K C, FU S C, et al. Enhancement of piezoelectric fan cooling by geometrical arrangements [J]. International Journal of Heat and Mass Transfer, 2022, 199: 123479. doi: 10.1016/j.ijheatmasstransfer.2022.123479
    [18] AMER M. A novel bionic impeller for laptop cooling fan system [J]. Results in Engineering, 2023, 20: 101558. doi: 10.1016/j.rineng.2023.101558
    [19] CHOUDHARY M, MUKHERJEE S, KUMAR P. Analysis and optimization of geometry of 3D printer part cooling fan duct [J]. Materials Today: Proceedings, 2022, 50: 2482-2487. doi: 10.1016/j.matpr.2021.10.444
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-07-24
  • 录用日期:  2024-08-14
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回