CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滚抛磨块三维速度场的双相机测试方法

田春越 丁俊飞 李文辉 李秀红 杨胜强

田春越, 丁俊飞, 李文辉, 李秀红, 杨胜强. 滚抛磨块三维速度场的双相机测试方法[J]. 金刚石与磨料磨具工程, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014
引用本文: 田春越, 丁俊飞, 李文辉, 李秀红, 杨胜强. 滚抛磨块三维速度场的双相机测试方法[J]. 金刚石与磨料磨具工程, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014
TIAN Chunyue, DING Junfei, LI Wenhui, LI Xiuhong, YANG Shengqiang. Dual camera testing method for 3D velocity field of rolling and grinding blocks[J]. Diamond & Abrasives Engineering, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014
Citation: TIAN Chunyue, DING Junfei, LI Wenhui, LI Xiuhong, YANG Shengqiang. Dual camera testing method for 3D velocity field of rolling and grinding blocks[J]. Diamond & Abrasives Engineering, 2025, 45(4): 542-550. doi: 10.13394/j.cnki.jgszz.2024.0014

滚抛磨块三维速度场的双相机测试方法

doi: 10.13394/j.cnki.jgszz.2024.0014
基金项目: 国家自然科学基金(51975399,52075362, 51875389);中央引导地方科技发展资金(YDZJSX2022A020,YDZJSX2022B004)。
详细信息
    作者简介:

    丁俊飞,男,1992年生,讲师。主要研究方向:单相层析三维流场测试技术、旋翼类无人机设计及飞控系统、先进工业三维视觉测量/检测技术。E-mail:dingjunfei@tyut.edu.cn

    通讯作者:

    李文辉,男,1975年生,教授。主要研究方向:高性能零件形性协同制造。E-mail:wenhui_li7190@126.com

  • 中图分类号: TG74; TG58; TP391

Dual camera testing method for 3D velocity field of rolling and grinding blocks

  • 摘要: 滚抛磨块的运动速度是影响滚磨光整加工效果的重要因素。为解决滚抛磨块流场速度测试中存在的无法直接获得速度、测试过程对流场存在干扰、只能实现单点测试等问题,提出滚抛磨块三维速度场的双相机测试方法。搭建滚抛磨块三维速度场测试系统,通过位移测试实验验证测试系统的准确性与稳定性,并对立式振动滚磨光整加工设备进行滚抛磨块三维速度场测试实验。结果表明:位移实验测得的位移值与实际施加的位移值基本一致,X方向位移平均误差的绝对值<0.10 mm,Z方向位移平均误差的绝对值<0.15 mm,且测得的滚抛磨块三维速度场运动规律与实际规律基本一致。

     

  • 图  1  工作原理

    Figure  1.  Working principle

    图  2  滚抛磨块三维速度场测试系统

    Figure  2.  3D velocity field testing system for rolling and grinding blocks

    图  3  算法流程图

    Figure  3.  Algorithm flow chart

    图  4  位移测试实验装置图

    Figure  4.  Diagram of displacement testing experimental setup

    图  5  双相机采集的棋盘格标定板

    Figure  5.  Checkerboard calibration board for dual camera acquisition

    图  6  灰度处理

    Figure  6.  Grayscale processing

    图  7  高斯滤波

    Figure  7.  Gaussian filtering

    图  8  位移测试实验结果

    Figure  8.  Experimental results of displacement testing

    图  9  三维速度场测试实验装置

    Figure  9.  Experimental setup of 3D velocity field text

    图  10  测量区域

    Figure  10.  Measurement area

    图  11  实际测量得到的二维速度场示意图

    Figure  11.  Schematic diagram of two-dimensional velocity field obtained from actual measurements

    图  12  实际测量得到的三维速度场示意图

    Figure  12.  Schematic diagram of three-dimensional velocity field obtained from actual measurements

    图  13  滚抛磨块流场运动规律[28]

    Figure  13.  Flow field motion law of rolling grinding block[28]

  • [1] 杨胜强, 李文辉, 陈红玲. 表面光整加工理论与新技术 [M]. 北京: 国防工业出版社, 2011.

    YANG Shengqiang, LI Wenhui, CHEN Hongling. Surface finishing theory and new technologies [M]. Beijing: National Defense Industry Press, 2011.
    [2] 杨胜强, 李文辉, 李秀红, 等. 高性能零件滚磨光整加工的研究进展 [J]. 表面技术, 2019, 48(10): 13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002

    YANG Shengqiang, LI Wenhui, LI Xiuhong, et al. Research development of mass finishing for high-performance parts [J]. surface Technology, 2019, 48(10): 13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002
    [3] KUMAR P P, SATHYAN S. Simulation of 1D abrasive vibratory finishing process [J]. Advanced Materials Research, 2012(565): 290-295. doi: 10.4028/www.scientific.net/AMR.565.290
    [4] CIAMPINI D, PAPINI M, SPELT J K. Impact velocity measurement of media in a vibratory finisher [J]. Journal of Materials Processing Technology, 2007, 183(2/3): 347-357. doi: 10.1016/j.jmatprotec.2006.10.024
    [5] BAGHBANAN M R, YABUKI A, TIMSIT R S, et al. Tribological behavior of aluminum alloys in a vibratory finishing process [J]. Wear, 2003, 255(7): 1369-1379. doi: 10.1016/S0043-1648(03)00124-8
    [6] UHLMANN E, EULITZ A, DETHLEFS A. Discrete element modelling of drag finishing [J]. Procedia CIRP, 2015, 31: 369-374. doi: 10.1016/j.procir.2015.03.021
    [7] LIU J Z, GRACE J R, BI X T. Novel multifunctional optical-fiber probe: I. development and validation [J]. AIChE Journal, 2003, 49(6): 1405-1420. doi: 10.1002/aic.690490607
    [8] CIAMPINI D, PAPINI M, SPELT J K. Modeling the development of Almen strip curvature in vibratory finishing [J]. Journal of Materials Processing Technology, 2009, 209(6): 2923-2939. doi: 10.1016/j.jmatprotec.2008.06.060
    [9] DOMBLESKY J, EVANS R, CARIAPA V. Material removal model for vibratory finishing [J]. International Journal of Production Research, 2004, 42(5): 1029-1041. doi: 10.1080/00207540310001619641
    [10] LI X H, WU F F, LI W H, et al. Kinematic characteristics of mass finishing process with the parallel spindle: Velocity measurement and analysis of the media [J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12. doi: 10.1177/1687814017729091
    [11] 吴远超, 李秀红, 王嘉明, 等. 水平振动抛磨颗粒介质流场特性分析 [J]. 表面技术, 2021, 50(11): 329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035

    WU Yuanchao, LI Xiuhong, WANG Jiaming, et al. Flow field characteristics analysis of media for horizontal vibratory mass finishing [J]. Surface Technology, 2021, 50(11): 329-338. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.035
    [12] 赵恺, 王娜, 杨胜强, 等. 主轴式滚磨光整加工EDEM-FLUENT耦合仿真模拟分析研究 [J]. 机械设计与制造, 2023(7): 6-11. doi: 10.3969/j.issn.1001-3997.2023.07.002

    ZHAO Kai, WANG Na, YANG Shengqiang, et al. Study on EDEM-FLUENT coupling simulation analysis of spindle barrel finishing [J]. Machinery Design and Manufacture, 2023(7): 6-11. doi: 10.3969/j.issn.1001-3997.2023.07.002
    [13] 王程伟, 李秀红, 李文辉, 等. 主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析 [J]. 表面技术, 2018, 47(11): 251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036

    WANG Chengwei, LI Xiuhong, LI Wenhui, et al. Analaysis on numerical simulation and mechanism of medium flow field in spindle barrel finishing process [J]. Surface Technology, 2018, 47(11): 251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036
    [14] PAN B, QIAN K, XIE H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review [J]. Measurement Science & Technology, 2009, 20(6): 062001. doi: 10.1088/0957-0233/20/6/062001
    [15] GRANT. Particle image velocimetry: A review [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(1): 55-76. doi: 10.1243/0954406971521665
    [16] ADRIAN R J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005, 39(2): 159-169. doi: 10.1007/s00348-005-0991-7
    [17] SCARANO F. Iterative image deformation methods in PIV [J]. Measurement Science & Technology, 2002, 13(1): R1-R19. doi: 10.1088/0957-0233/13/1/201
    [18] 武甜. 基于图像相关法的滚抛磨块平面流场测试研究 [D]. 太原: 太原理工大学, 2022.

    WU Tian. Image correlation-based test study of flat flow field of media [D]. Taiyuan: Taiyuan University of Technology, 2022.
    [19] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [20] HARTLEY R I, STURM P. Triangulation [J]. Computer Vision and Image Understanding, 1997, 68(2): 146-157. doi: 10.1006/cviu.1997.0547
    [21] LU H, CARY P D. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient [J]. Experimental Mechanics, 2000, 40(4): 393-400. doi: 10.1007/BF02326485
    [22] PAN B, XIE H, WANG Z. Equivalence of digital image correlation criteria for pattern matching [J]. Applied Optics, 2010, 49(28): 5501-5509. doi: 10.1364/AO.49.005501
    [23] BAKER S, MATTHEWS I. Lucas-Kanade 20 years on: A unifying framework [J]. International Journal of Computer Vision, 2004, 56(3): 221-255. doi: 10.1023/B:VISI.0000011205.11775.fd
    [24] MICHAEL U. Splines: A perfect fit for signal and image processing [J]. IEEE Signal Processing Magazine, 1999, 16(6): 22-38. doi: 10.1109/79.799930
    [25] 张翔宇, 柴宇明, 齐珂心, 等. 虚拟视觉刺激引起幼年斑马鱼捕食行为放弃的研究 [J]. 生物化学与生物物理进展, 2023, 50(6): 1454-1465. doi: 10.16476/j.pibb.2022.0318

    ZHANG Xiangyu, CHAI Yuming, QI Kexin, et al. Virtual visual stimulation induces predation by juvenile zebrafish research on behavioral abandonment [J]. Progress in Biochemistry and Biophysics, 2023, 50(6): 1454-1465. doi: 10.16476/j.pibb.2022.0318
    [26] 朱华福. 基于PLC的平均值和标准偏差计算在烟草制丝线上的运用 [J]. 中国信息化, 2013(14): 171-172.

    ZHU Huafu. The application of average and standard deviation calculation based on PLC in tobacco silk production line [J]. China Informatization, 2013(14): 171-172.
    [27] HU Z, XIE H, LU J, et al. Error evaluation technique for three-dimensional digital image correlation [J]. Applied Optics, 2011, 50(33): 6239-6247. doi: 10.1364/AO.50.006239
    [28] HASHIMOTO F, JOHNSON S P. Modeling of vibratory finishing machines [J]. CIRP Annals, 2015, 64(1): 345-348. doi: 10.1016/j.cirp.2015.04.004
  • 加载中
图(13)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-08-16
  • 录用日期:  2024-10-10
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回