CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
WANG Youliang, GAO Xichun, ZHANG Wenjuan. Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis[J]. Diamond & Abrasives Engineering, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282
Citation: WANG Youliang, GAO Xichun, ZHANG Wenjuan. Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis[J]. Diamond & Abrasives Engineering, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282

Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis

doi: 10.13394/j.cnki.jgszz.2023.0282
More Information
  • Received Date: 2023-12-28
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2024-03-05
  • Available Online: 2025-03-24
  •   Objectives  MCF polishing technology has become an advanced ultra-precision machining method. To address the issue of different process parameters in achieving optimal surface quality or maximum processing efficiency in MCF polishing technology, it is necessary to accurately control the range of each process parameter and deeply understand the impact of different process parameters on MCF polishing performance.  Methods  The process parameters of the MCF polishing tool are optimized based on grey relation analysis (GRA) to meet the requirements of minimum surface roughness while improving material removal efficiency. Under the given experimental conditions, it is verified that the optimized MCF polishing tool has excellent polishing performance, and the mechanism of the influences of various process parameters on the polishing performance of the MCF polishing tool is analyzed in detail. Firstly, a three-factor four-level PMMA workpiece polishing experiment is designed using the orthogonal test method, and the influence mechanism of each factor on MCF polishing performance is analyzed. Afterwards, the GRA method is used to optimize multi-objective factors, and the optimization scheme of process parameters with the best polishing effect is determined. Finally, the optimized process parameters are used to verify the polishing of the workpiece, and the surface morphology and the contour of the workpiece are obtained.  Results  When the magnetic induction intensity B = 0.5 T, the diameter of carbonyl iron powder DCIP = 7 μm, and the diameter of abrasive particle DAP = 3 μm, the surface finishing ability of the MCF polishing tool is the best. When the magnetic induction intensity B = 0.5 T, the diameter of carbonyl iron powder Dcip = 7 μm, and the diameter of abrasive particle DAP = 7 μm, the material removal efficiency of the MCF polishing tool is the highest. The magnetic induction intensity has the greatest impact on the polishing quality and the material removal efficiency of the MCF polishing tool, followed by the diameter of carbonyl iron powder, while the effect of the diameter of the abrasive particle is relatively small. During the polishing process, abrasive particle with a smaller diameter make the surface of the workpiece smoother, but the processing efficiency is lower. The polishing effect of abrasive particles with a larger diameter is uneven, but the processing efficiency is higher. The grey correlation degree of each orthogonal experimental group is calculated based on GRA, and the multi-objective factors were optimized to obtain the optimal combination of process parameters, comprehensively considering the workpiece surface quality and processing efficiency, that is, when the magnetic induction intensity B = 0.5 T, the diameter of carbonyl iron powder DCIP = 7 μm, and the diameter of abrasive particle DAP = 3 μm, the MCF polishing tools achieve the best comprehensive polishing performance. Under the given conditions, the PMMA workpiece is polished by using the optimal process parameter, reducing the surface roughness of the workpiece from 477 nm to 14 nm, with a surface roughness reduction rate of 97.06%, which is 3.49 percentage points higher than that before optimization. The material removal rate reaches 2.088×108 $ \mathrm{\mu } $m3/min, which is 3.5% higher than that without optimization.  Conclusions  The process parameter combination obtained through GRA optimization not only meets the requirements for high surface quality of the workpiece, but also significantly improves the material removal rate of the MCF polishing tool. After GRA optimization, the polishing ability of the MCF polishing tool is significantly enhanced.

     

  • loading
  • [1]
    王承遇, 李松基, 陶瑛, 等. 超光滑超精密玻璃抛光新技术 [J]. 玻璃,2009,36(10):33-37. doi: 10.3969/j.issn.1003-1987.2009.10.012

    WANG Chengyu, LI Songji, TAO Ying, et al. New super-smooth and super-precision polishing technology for glass surface [J]. Glass,2009,36(10):33-37. doi: 10.3969/j.issn.1003-1987.2009.10.012
    [2]
    张韬, 何建国, 黄文, 等. 机械轴与虚拟轴复合的磁流变抛光 [J]. 光学精密工程,2021,29(2):286-296. doi: 10.37188/OPE.20212902.0286

    ZHANG Tao, HE Jianguo, HUANG Wen, et al. Magnetorheological finishing method that combines mechanical and virtual axes [J]. Optics and Precision Engineering,2021,29(2):286-296. doi: 10.37188/OPE.20212902.0286
    [3]
    袁巨龙, 张飞虎, 戴一帆, 等. 超精密加工领域科学技术发展研究 [J]. 机械工程学报,2010,46(15):161-177. doi: 10.3901/JME.2010.15.161

    YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Development research of science and technologies in ultra-precision machining field [J]. Chinese Journal of Mechanical Engineering,2010,46(15):161-177. doi: 10.3901/JME.2010.15.161
    [4]
    康桂文. 磁流变抛光技术的研究现状及其发展 [J]. 机床与液压,2008,36(3):173-175, 182. doi: 10.3969/j.issn.1001-3881.2008.03.058

    KANG Guiwen. Research and development of magnetorheological finishing [J]. Machine Tool & Hydraulics,2008,36(3):173-175, 182. doi: 10.3969/j.issn.1001-3881.2008.03.058
    [5]
    赵卫, 豆立博, 刘玲. 磁流变抛光技术在SiC晶片加工工艺中的应用研究 [J]. 价值工程,2018,37(11):222-223. doi: 10.14018/j.cnki.cn13-1085/n.2018.11.114

    ZHAO Wei, DOU Lifu, LIU Ling. Application research on magnetorheological finishing in the SiC wafer processing [J]. Value Engineering,2018,37(11):222-223. doi: 10.14018/j.cnki.cn13-1085/n.2018.11.114
    [6]
    李改灵. 光学材料磨削加工亚表面损伤测量的理论与实验研究 [D]. 长沙: 国防科学技术大学, 2006.

    LI Gailing. Theoretical and experimental research on the measurement of grinding subsurface damages for optical materials [D]. Changsha: National University of Defense Technology, 2006.
    [7]
    SHIMADA K, AKAGAMI Y, KAMIYAMA S, et al. New microscopic polishing with magnetic compound fluid (MCF) [J]. Journal of Intelligent Material Systems and Structures,2002,13(7/8):405-408. doi: 10.1106/104538902026159
    [8]
    田可, 郭会茹, 吴勇波, 等. 旋转磁场下非球面工件的磁性混合流体抛光 [J]. 金刚石与磨料磨具工程,2022,42(4):495-503. doi: 10.13394/j.cnki.jgszz.2021.0211

    TIAN Ke, GUO Huiru, WU Yongbo, et al. Magnetic compound fluid polishing of aspheric workpiece under rotating magnetic field [J]. Diamond & Abrasives Engineering,2022,42(4):495-503. doi: 10.13394/j.cnki.jgszz.2021.0211
    [9]
    张军锋, 史耀耀, 蔺小军, 等. 基于灰色关联分析的叶片砂带抛光参数优化 [J]. 计算机集成制造系统,2017,23(4):806-814. doi: 10.13196/j.cims.2017.04.015

    ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, et al. Parameters optimization in belt polishing process of blade based on grey relational analysis [J]. Computer Integrated Manufacturing Systems,2017,23(4):806-814. doi: 10.13196/j.cims.2017.04.015
    [10]
    BAN X, DUAN T, TIAN Z, et al. Process optimization of 4H-SiC chemical mechanical polishing based on grey relational analysis [J]. Semiconductor Science and Technology,2023,38(7):075014. doi: 10.1088/1361-6641/acd9e5
    [11]
    周虎, 李中会. 基于灰色系统理论的磁流变抛光工艺参数优化研究 [J]. 制造技术与机床,2010(5):89-93. doi: 10.3969/j.issn.1005-2402.2010.05.030

    ZHOU Hu, LI Zhonghui. Research on optimizing the processing parameters for magnetorheological finishing based on gray theory [J]. Manufacturing Technology & Machine Tool,2010(5):89-93. doi: 10.3969/j.issn.1005-2402.2010.05.030
    [12]
    史丽晨, 刘亚雄, 史炜椿, 等. 基于灰色关联分析的GH2132线材高精度切削参数优化 [J]. 表面技术,2022,51(11):373-384. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.035

    SHI Lichen, LIU Yaxiong, SHI Weichun, et al. Optimization of high-precision cutting parameters of GH2132 wire based on grey relational analysis [J]. Surface Technology,2022,51(11):373-384. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.035
    [13]
    SHIMADA K, WU Y B, Wong Y C. Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF) [J]. Journal of Magnetism and Magnetic Materials,2003,262(2):242-247. doi: 10.1016/S0304-8853(02)01497-X
    [14]
    FENG M, WU Y B, WANG Y LI, et al. Effect of the components of magnetic compound fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool [J]. Precision Engineering,2020,65:216-229. doi: 10.1016/j.precisioneng.2020.04.021
    [15]
    姜晨, 刘剑, 魏久祥, 等. h形磁性复合流体抛光工具设计及工艺试验 [J]. 光学精密工程,2022,30(12):1452-1461. doi: 10.37188/OPE.20223012.1452

    JIANG Chen, LIU Jian, WEI Jiuxiang, et al. Design and process test of h-shaped magnetic composite fluid polishing tool [J]. Optics and Precision Engineering,2022,30(12):1452-1461. doi: 10.37188/OPE.20223012.1452
    [16]
    王道明, 侯友夫, 田祖织, 等. 颗粒尺寸及温度对羰基铁粉磁化性能的影响 [J]. 功能材料,2014,45(19):19006-19009. doi: 10.3969/j.issn.1001-9731.2014.19.002

    WANG Daoming, HOU Youfu, TIAN Zuzhi, et al. Effect of particle size and temperature on magnetization properties of carbonyl iron powder [J]. Journal of Functional Materials,2014,45(19):19006-19009. doi: 10.3969/j.issn.1001-9731.2014.19.002
    [17]
    SIDPARA A, JAIN V K. Nano–level finishing of single crystal silicon blank using magnetorheological finishing process [J]. Tribology International,2012,47:159-166. doi: 10.1016/j.triboint.2011.10.008
    [18]
    朱斓瑛, 赵越, 戴玉, 等. 灰色关联度分析模型的特征与应用 [J]. 科学咨询(科技·管理),2019(8):79.

    ZHU Lanying, ZHAO Yue, DAI Yu, et al. Characteristics and applications of grey relational degree analysis model [J]. Technology & Management,2019(8):79.
    [19]
    邓家云. 单晶SiC电芬顿化学机械抛光机理研究 [D]. 广州: 广东工业大学, 2022.

    DENG Jiayun. Mechanism of electro-fenton chemical mechanica polishing for single crystal SiC [D]. Guangzhou: Guangdong University of Technology, 2022.
    [20]
    DENG J L. Introduction to grey system theory [J]. The Journal of Grey System,1989,1(1):1-24. doi: 10.1007/978-3-642-16158-2_1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article Metrics

    Article views (80) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return