CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
SUN Yongguo, WANG Wei, LI Wenzhi, WEI Hengju, WEI Shiliang. Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory[J]. Diamond & Abrasives Engineering, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103
Citation: SUN Yongguo, WANG Wei, LI Wenzhi, WEI Hengju, WEI Shiliang. Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory[J]. Diamond & Abrasives Engineering, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103

Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory

doi: 10.13394/j.cnki.jgszz.2023.0103
More Information
  • Received Date: 2023-05-06
  • Rev Recd Date: 2023-08-25
  • Available Online: 2024-06-28
  • To study the surface morphology of Si3N4 ceramics using rotary ultrasonic grinding, changes in the surface morphology under different machining parameters were analyzed based on fractal theory. Orthogonal experiments were designed to compare and analyze the effects of various processing parameters on the fractal dimensions and multifractal spectra of the Si3N4 ceramic surface. Additionally, single-factor experiments were conducted to study the roughness, fractal dimensions, and multifractal spectra of the Si3N4 ceramic surface under different processing parameters. The results show that fractal dimensions can effectively characterize the defect state of the processed surface of Si3N4 ceramics during rotary ultrasonic grinding, while multifractal spectra can better represent the degree of fluctuation in surface defects.

     

  • loading
  • [1]
    ZHANG Z, SHI K, HUANG X, et al. Development of a probabilistic algorithm of surface residual materials on Si3N4 ceramics under longitudinal torsional ultrasonic grinding [J]. Ceramics International,2022,48(9):12028-12037. doi: 10.1016/j.ceramint.2022.01.060
    [2]
    KUMAR K, KIM M J, PARK Y J, et al. Twofold increase in Weibull modulus of hot-pressed Si3N4 ceramic by modified pressing profile [J]. Materials Today Communications,2022(32):103979. doi: 10.1016/j.mtcomm.2022.103979
    [3]
    MOZAMMEL M, MORSHEDO M S, MD K, et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel [J]. Measurement,2018(118):43-51.
    [4]
    全书海. 基于表面灰度图像的加工表面形貌分形特征研究 [D]. 武汉: 武汉理工大学, 2003.

    QUAN Shuhai. Research on fractal features of machined surface morphology based on surface grayscale images [D]. Wuhan: Wuhan University of Technology, 2003.
    [5]
    李静, 尹衍升, 马来鹏, 等. 分形理论在陶瓷材料断裂行为中的应用 [J]. 稀有金属材料与工程,2007(S1):707-710.

    LI Jing, YIN Yansheng, MA Laipeng, et al. Application of fractal theory in the fracture behavior of ceramic materials [J]. Rare Metal Materials and Engineering,2007(S1):707-710.
    [6]
    奚欣欣, 丁文锋, 傅玉灿, 等. 颗粒增强钛基复合材料高速磨削表面分形分析 [J]. 金刚石与磨料磨具工程,2014,34(6):26-29, 33.

    XI Xinxin, DING Wenfeng, FU Yucan, et al. Surface fractal analysis of particle reinforced titanium matrix composites during high-speed grinding [J]. Diamond and Abrasives Engineering,2014,34(6):26-29, 33.
    [7]
    邹明清. 分形理论的若干应用 [D]. 湖北: 华中科技大学, 2007.

    ZOU Mingqing. Several applications of fractal theory [D]. Hubei: Huazhong University of Science and Technology, 2007.
    [8]
    吴丁贵. 基于分形几何理论表面粗糙度测量系统的研究 [D]. 厦门: 厦门大学, 2014.

    WU Dinggui . Research on surface roughness measurement system based on fractal geometry theory [D]. Xiamen: Xiamen University, 2014.
    [9]
    张彦斌, 林滨, 梁小虎, 等. 基于分形理论表征工程陶瓷磨削表面 [J]. 硅酸盐学报,2013,41(11):1558-1563.

    ZHANG Yanbin, LIN Bin, LIANG Xiaohu, et al. Characterization of engineering ceramic grinding surface based on fractal theory [J]. Journal of Silicates,2013,41(11):1558-1563.
    [10]
    NI X, SUN J, MA C, et al. Wear model of a mechanical seal based on piecewise fractal theory [J]. Fractal and Fractional,2023,7(3):251. doi: 10.3390/fractalfract7030251
    [11]
    王洪娇, 秦襄培. 涂层表面形貌的分形表征研究 [J]. 机械,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011

    WANG Hongjiao, QIN Xiangpei. Fractal characterization of coating surface morphology [J]. Machinery,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011
    [12]
    SHAO C X, GUO H, MENG S H, et al. Characterization of ceramic thermal shock cracks based on the multifractal spectrum [J]. Fractal and Fractional,2022,6(10):539. doi: 10.3390/fractalfract6100539
    [13]
    宋伟杰, 庞弘阳, 关山, 等. 基于多重分形谱参数的刀具磨损状态特征提取 [J]. 东北电力大学学报,2019,39(1):35-40.

    SONG Weijie, PANG Hongyang, GUAN Shan, et al. Feature extraction of tool wear state based on multifractal spectral parameters [J]. Journal of Northeast Electric Power University,2019,39(1):35-40.
    [14]
    徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱 [J]. 材料导报,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257

    XU Shanhua, XIA Min. fractal dimension and multifractal spectrum of corroded steel surface [J]. Materials Herald,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257
    [15]
    董中林, 汪祚远, 施毅, 等. 基于多重分形谱的粗糙模拟表面分析 [J]. 真空,2016(6):59-62.

    DONG Zhonglin, WANG Zuoyuan, SHI Yi, et al. Rough simulation surface analysis based on multifractal spectra [J]. Vacuum,2016(6):59-62.
    [16]
    王和旭. Si3N4 陶瓷旋转超声磨削表面摩擦磨损特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015.

    WANG Hexu. Study on the surface friction and wear characteristics of Si3N4 ceramic during rotary ultrasonic grinding [D]. Harbin: Harbin Engineering University, 2015.
    [17]
    魏士亮. Si3N4旋转超声磨削加工表面微观形貌创成机理及优化技术 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    WEI Shiliang. Mechanism and optimization technology of surface micromorphology formation in Si3N4 rotary ultrasonic grinding process [D]. Harbin: Harbin Engineering University, 2016.
    [18]
    樊福梅, 梁平, 吴庚申. 基于分形盒维数的汽轮机转子振动故障诊断的实验研究 [J]. 核动力工程,2006(1):85-89.

    FAN Fumei, LIANG Ping, WU Gengshen. Experimental study on fault diagnosis of steam turbine rotor vibration based on fractal box dimension [J]. Nuclear Power Engineering,2006(1):85-89.
    [19]
    淦犇, 黄宜坚. 铣削加工表面轮廓的几何分形特征 [J]. 华侨大学学报,2010,31(4):371-377.

    GAN Ben, HUANG Yijian. Geometric fractal features of surface profile in milling [J]. Journal of Huaqiao University,2010,31(4):371-377.
    [20]
    王雯朝. 加工表面形貌特征仿真与切削参数影响规律研究 [D]. 陕西: 西安理工大学, 2016.

    WANG Wenchao. Research on the simulation of surface morphology characteristics and the influence of cutting parameters in nachining [D] Shanxi: Xi’an University of Technology, 2016.
    [21]
    MIAO B, WANG X, Li H. Quantitative analysis of infrared thermal images in rock fractures based on multi-fractal theory [J]. Sustainability,2022,14(11):6543. doi: 10.3390/su14116543
    [22]
    杨红平, 傅卫平, 王雯, 等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型 [J]. 机械工程学报,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102

    YANG Hongping, FU Weiping, WANG Wen, et al. Calculation model of normal contact stiffness of joint surface based on fractal geometry and contact mechanics theory [J]. Journal of Mechanical Engineering,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102
    [23]
    周兴林, 肖神清, 刘万康, 等. 沥青路面表面纹理的多重分形特征及其磨光行为 [J]. 东南大学学报(自然科学版),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027

    ZHOU Xinglin, XIAO Shenqing, LIU Wankang, et al. Multifractal characteristics and polishing behavior of asphalt pavement surface texture [J]. Journal of Southeast University (Natural Science Edition),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (154) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return