Citation: | BIE Wenbo, ZHAO Bo, CHEN Fan, WANG Xiaobo, ZHAO Chongyang, NIU Ying. Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability[J]. Diamond & Abrasives Engineering, 2023, 43(4): 401-416. doi: 10.13394/j.cnki.jgszz.2023.0095 |
[1] |
王亮亮, 赵波, 殷森. 金属表面疏水性研究进展 [J]. 表面技术,2017,46(12):153-161. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.025
WANG Liangliang, ZHAO Bo, YIN Sen. Hydrophobicity of metal surface [J]. Surface Technology,2017,46(12):153-161. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.025
|
[2] |
SANTOS L M, LANG A, WAHIDI R, et al. Passive separation control of shortfin mako shark skin in a turbulent boundary layer [J]. Experimental Thermal and Fluid Science,2021,128:110433. doi: 10.1016/j.expthermflusci.2021.110433
|
[3] |
CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of nepenthes alata [J]. Nature,2016,532(7579):85-89. doi: 10.1038/nature17189
|
[4] |
张德远, 陈华伟, 张鑫, 等. 军用仿生技术发展趋势 [J]. 国防技术,2013,34(6):1-5, 10. doi: 10.3969/j.issn.1671-4547.2013.06.001
ZHANG Deyuan, CHEN Huawei, ZHANG Xin, et al. The development and future of bionics in military application [J]. National Defense Science & Technology,2013,34(6):1-5, 10. doi: 10.3969/j.issn.1671-4547.2013.06.001
|
[5] |
郑清春, 毛璐璐, 史于涛, 等. 仿生织构表面对人工髋关节副动压润滑性能及减摩性分析 [J]. 机械工程学报,2021,57(11):102-111. doi: 10.3901/JME.2021.11.102
ZHENG Qingchun, MAO Lulu, SHI Yutao, et al. Analysis of biomimetic texture surface on dynamic compression lubrication and friction reduction of artificial hip pair [J]. Journal of Mechanical Engineering,2021,57(11):102-111. doi: 10.3901/JME.2021.11.102
|
[6] |
TIAN Y L, HU B R, SONG J, et al. Bioinspired multiscale wrinkling patterns on curved substrates: An overview [J]. Nano-Micro Letter,2020,12(1):1-42. doi: 10.1007/s40820-020-00436-y
|
[7] |
王东伟, 莫继良, 张琦, 等. 沟槽表面填充材料对界面摩擦振动噪声的影响 [J]. 摩擦学报,2017,37(5):647-655. doi: 10.16078/j.tribology.2017.05.012
WANG Dongwei, MO Jiliang, ZHANG Qi, et al. Effect of filling material into grooves on the interfacial friction-induced vibration and noise [J]. Tribology,2017,37(5):647-655. doi: 10.16078/j.tribology.2017.05.012
|
[8] |
LI X Y, LI Y P, MUZAMMIL I, et al. Antireflection and antiwetting functionalities of plasma-nanotextured polymer surfaces with biomimetic nanopillars [J]. Plasma Processes and Polymers,2020,17(11):e2000050. doi: 10.1002/ppap.202000050
|
[9] |
FU X J, BA Y, SUN J J. Numerical study of thermocapillary migration behaviors of droplets on a grooved surface with a three-dimensional color-gradient lattice Boltzmann model [J]. Physics of Fluids,2021,33(6):062108. doi: 10.1063/5.0050081
|
[10] |
王志远, 邢志国, 王海斗, 等. 液滴在固体织构化表面上的润湿行为研究现状 [J]. 机械工程学报,2022,58(1):124-144.
WANG Zhiyuan, XING Zhiguo, WANG Haidou, et al. Research progress of droplet wetting behavior on solid textured surface [J]. Journal of Mechanical Engineering,2022,58(1):124-144.
|
[11] |
PETE B, PETER L, EVA L U. Application of laser-ultrasonics to texture measurements in metal processing [J]. Acta Materialia,2017,123:329-336. doi: 10.1016/j.actamat.2016.10.043
|
[12] |
WU Z, BAO H, XING Y Q, et al. Tribological characteristics and advanced processing methods of textured surfaces: a review [J]. The International Journal of Advanced Manufacturing Technology,2021,114:1241-1277. doi: 10.1007/s00170-021-06954-2
|
[13] |
LAI L J, ZHOU H, ZHU L M. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique [J]. Applied Surface Science,2016,364:442-445. doi: 10.1016/j.apsusc.2015.12.085
|
[14] |
ZHANG H G, ZHANG Z, Gilchrist M. Advances in precision micro/nano-electroforming: A state-of-the-art review [J]. Journal of Micromechanics and Microengineering,2020,30(10):103002. doi: 10.1088/1361-6439/aba017
|
[15] |
LIAO Z R, LA MONACA A, MURRY J, et al. Surface integrity in metal machining-part I: Fundamentals of surface characteristics and formation mechanisms [J]. International Journal of Machine Tools and Manufacture,2021,162:103687. doi: 10.1016/j.ijmachtools.2020.103687
|
[16] |
张存鹰, 赵波. 超声振动辅助加工表面微结构及其特性研究进展 [J]. 表面技术,2019,48(5):259-274. doi: 10.16490/j.cnki.issn.1001-3660.2019.05.038
ZHANG Cunying, ZHAO Bo. Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining [J]. Surface Technology,2019,48(5):259-274. doi: 10.16490/j.cnki.issn.1001-3660.2019.05.038
|
[17] |
YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J]. International Journal of Machine Tools and Manufacture,2020,156:103594. doi: 10.1016/j.ijmachtools.2020.103594
|
[18] |
SONIA P, JAIN J K, SAXENA K K. Influence of ultrasonic vibration assistance in manufacturing processes: A Review [J]. Materials and Manufacturing Processes,2021,36(13):1451-1475. doi: 10.1080/10426914.2021.1914843
|
[19] |
别文博, 赵波, 王晓博, 等. 超声加工在齿轮抗疲劳制造中的研究综述与展望 [J]. 表面技术,2018,47(7):35-51. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.006
BIE Wenbo, ZHAO Bo, WANG Xiaobo, et al. Overview and expectation on gear anti-fatigue manufacture by ultrasonic-assisted machining [J]. Surface Technology,2018,47(7):35-51. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.006
|
[20] |
高国富, 浮宗霞, 王毅, 等. Ti-Al系金属间化合物精密加工研究进展 [J]. 稀有金属材料与工程,2021,50(5):1867-1882.
GAO Guofu, FU Zongxia, WANG Yi, et al. Research progress on precision machining of ti-al intermetallic compounds [J]. Rare Metal Materials and Engineering,2021,50(5):1867-1882.
|
[21] |
GRECO A, RAPHAELSON S, EHMANN K, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method [J]. Journal of Manufacturing Science and Engineering-Transactions of the SAME,2009,131(6):061005. doi: 10.1115/1.4000418
|
[22] |
NESTLER A, SCHUBERT A. Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites [J]. Procedia CIRP,2014,13:125-130. doi: 10.1016/j.procir.2014.04.022
|
[23] |
ZHANG R, STEINERT P, SCHUBERT A. Microstructuring of surfaces by two-stage vibration-assisted turning [J]. Procedia CIRP,2014,14:136-141. doi: 10.1016/j.procir.2014.03.026
|
[24] |
SCHUBERT A, NESTLER A, PINTERNAGEL S, et al. Influence of ultrasonic vibration assistance on the surface integrity in turning of the aluminium alloy AA2017 [J]. Materials Science and Engineering Technology,2011,42(7):658-665. doi: 10.1002/mawe.201100834
|
[25] |
GANDHI R, SEBASTIAN D, BASU S, et al. Surfaces by vibration/modulation-assisted texturing for tribological applications [J]. International Journal of Advanced Manufacturing Technology,2016,85:909-920. doi: 10.1007/s00170-015-7968-3
|
[26] |
李勋, 张德远. 不分离型超声椭圆振动切削试验研究 [J]. 机械工程学报,2010,46(19):177-182. doi: 10.3901/JME.2010.19.177
LI Xun, ZHANG Deyuan. Experimental study on the unseparated ultrasonic elliptical vibration cutting [J]. Journal of Mechanical Engineering,2010,46(19):177-182. doi: 10.3901/JME.2010.19.177
|
[27] |
LIU J, ZHANG D Y, QIN L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP) [J]. International Journal of Machine Tools and Manufacture,2012,53:141-150. doi: 10.1016/j.ijmachtools.2011.10.007
|
[28] |
MORIWAKI T, SHAMOTO E. Ultrasonic vibration elliptical cutting [J]. CIRP Annals,1995,44(1):31-34. doi: 10.1016/S0007-8506(07)62269-0
|
[29] |
SHAMOTO E, MORIWAKI T. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting [J]. CIRP Annals,1999,48(1):441-444. doi: 10.1016/S0007-8506(07)63222-3
|
[30] |
SUZUKI N, MASUDA S, HARITANI M, et al. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting [C]. Nagoya: IEEE, 2003.
|
[31] |
LEE J S, LEE D W, JUNG Y H, et al. A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting [J]. Journal of Materials Processing Technology,2002,130/131:396-400. doi: 10.1016/S0924-0136(02)00740-9
|
[32] |
SUZUKI N, HARITANI M, YANG J, et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts [J]. CIRP Annals,2007,56(1):127-130. doi: 10.1016/j.cirp.2007.05.032
|
[33] |
ZHANG J G, SUZUKI N, WANG Y L, et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond [J]. Journal of Materials Processing Technology,2014,214:2644-2659. doi: 10.1016/j.jmatprotec.2014.05.024
|
[34] |
SUZUKI N, YOKOI H, SHAMOTO E. Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting [J]. Precision Engineering,2011,35:44-50. doi: 10.1016/j.precisioneng.2010.09.006
|
[35] |
GUO P, EHMANN K F. An analysis of the surface generation mechanics of the elliptical vibration texturing process [J]. International Journal of Machine Tools and Manufacture,2013,64:85-95. doi: 10.1016/j.ijmachtools.2012.08.003
|
[36] |
KIM G D, LOH B G. An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics [J]. Journal of Materials Processing technology,2007,190:181-188. doi: 10.1016/j.jmatprotec.2007.02.047
|
[37] |
KIM G D, LOH B G. Characteristics of elliptical vibration cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency [J]. Journal of micromechanics and microengineering,2007,18(2):025002.
|
[38] |
KIM G D, LOH B G. Machining of micro-channels and pyramid patterns using elliptical vibration cutting [J]. The International Journal of Advanced Manufacturing Technology,2010,49:961-968. doi: 10.1007/s00170-009-2451-7
|
[39] |
KURNIAWAN R, KISWANTO G, KO T J. Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing [J]. International Journal of Machine Tools and Manufacture,2016,106:127-140. doi: 10.1016/j.ijmachtools.2016.03.007
|
[40] |
BREHL D E. 3-D microstructure creation using elliptical vibration-assisted machining(EUVD) [D]. Raleigh: North Carolina State University, 2014. 39: 511-514.
|
[41] |
CHEN W Q, ZHENG L, HUO D H, et al. Surface texture formation by non-resonant vibration assisted micro milling [J]. Journal of Micromechanics and Microengineering,2018,28(2):025006. doi: 10.1088/1361-6439/aaa06f
|
[42] |
KURNIAWAN R, KO T J. Surface topography analysis in three-dimensional elliptical vibration texturing (3D-EVT) [J]. The International Journal of Advanced Manufacturing Technology,2019,102:1601-1621. doi: 10.1007/s00170-018-03253-1
|
[43] |
XU S L, KURIYAGAWA T, SHIMADA K, et al. Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces [J]. Frontiers of Mechanical Engineering,2017,12(1):33-45. doi: 10.1007/s11465-017-0422-5
|
[44] |
原路生, 赵波, 王毅, 等. 椭圆振动辅助车削7075铝合金表面微织构及其特性 [J]. 中国机械工程,2020,31(15):1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010
YUAN Lusheng, ZHAO Bo, WANG Yi, et al. Surface micro-texture characteristics of 7075 aluminum alloys by elliptical vibration assisted turning [J]. Chine Mechanical Engineering,2020,31(15):1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010
|
[45] |
王刚. 一种三维椭圆振动金刚石切削装置的研制 [D]. 长春: 吉林大学, 2012.
WANG Gang. Development of a three-dimensional elliptical vibration assisted diamond cutting apparatus [D]. Changchun: Jilin University, 2012.
|
[46] |
刘培会. 一种三维椭圆振动切削装置的研制 [D]. 长春: 吉林大学, 2013.
LIU Peihui. Development of a new apparatus for three-dimensional elliptical vibration cutting [D]. Changchun: Jilin University, 2013.
|
[47] |
宋云. 三维椭圆振动辅助切削系统研究与开发 [D]. 南京: 南京航空航天大学, 2017.
SONG Yun. Research and development of 3D elliptical vibration assisted cutting system [J]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
[48] |
LU M M, ZHOU J K, LIN J Q, et al. Study on Ti-6Al-4V alloy machining applying the non-resonant three-dimensional elliptical vibration cutting [J]. Micromachines,2017,8(10):306. doi: 10.3390/mi8100306
|
[49] |
LIN J, LU M, ZHOU X. Development of a non-resonant 3D elliptical vibration cutting apparatus for diamond turning [J]. Experimental Techniques,2016,40:173-183. doi: 10.1007/s40799-016-0021-0
|
[50] |
CHEN J Z, LU M M, LIN J Q, et al. Non-resonant 3D elliptical vibration cutting induced submicron grating coloring [J]. International Journal of Precision Engineering and Manufacturing,2021,22:659-669. doi: 10.1007/s12541-021-00470-9
|
[51] |
白利娟, 张建华, 陶国灿, 等. 振动辅助铣削加工仿生表面研究 [J]. 中国机械工程,2016,27(9):1229-1233, 1242. doi: 10.3969/j.issn.1004-132X.2016.09.015
BAI Lijuan, ZHANG Jianhua, TAO Guocan, et al. Vibration assisted milling for bionic surface manufacturing [J]. Chine Mechanical Engineering,2016,27(9):1229-1233, 1242. doi: 10.3969/j.issn.1004-132X.2016.09.015
|
[52] |
CHEN W Q, LU Z, XIE W, et al. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling [J]. Journal of Materials Processing Technology,2019,266:339-350. doi: 10.1016/j.jmatprotec.2018.11.011
|
[53] |
张存鹰, 赵波, 王晓博. 纵扭复合超声端面铣削表面微结构建模与试验研究 [J]. 表面技术,2019,48(10):52-63, 79. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.006
ZHANG Cunying, ZHAO Bo, WANG Xiaobo. Modeling and experiment of surface microstructure by longitudinal-torsional compound ultrasonic end milling [J]. Surface Technology,2019,48(10):52-63, 79. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.006
|
[54] |
PANG Y, FENG P F, WANG J J, et al. Performance analysis of the longitudinal-torsional ultrasonic milling of Ti-6Al-4V [J]. The International Journal of Advanced Manufacturing Technology,2021,113:1255-1266. doi: 10.1007/s00170-021-06682-7
|
[55] |
袁照杰. Ti3Al金属间化合物多维超声加工切屑分离特性研究 [D]. 焦作: 河南理工大学, 2021.
YUAN Zhaojie. Study on chip separation characteristics in multidimensional ultrasonic machining Ti3Al intermetallic compounds [D]. Jiaozuo: Henan Polytechnic University, 2021.
|
[56] |
XU S L, SHIMADA K, MIZUTANI M, et al. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool [J]. International Journal of Machine Tools and Manufacture,2014,86:12-17. doi: 10.1016/j.ijmachtools.2014.06.005
|
[57] |
CHEN C S, TANG J Y, CHEN H F, et al. An active manufacturing method of surface micro structure based on ordered grinding wheel and ultrasonic-assisted grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,97:1627-1635. doi: 10.1007/s00170-018-2044-4
|
[58] |
JIANG J L, SUN S F, WANG D X, et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process [J]. International Journal of Machine Tools and Manufacture,2020,156:10359. doi: 10.1016/j.ijmachtools.2020.103595
|
[59] |
ZHOU W H, TANG J Y, SHAO W. Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding [J]. International Journal of Mechanical Sciences,2020,166:105426. doi: 10.1016/j.ijmecsci.2019.105246
|
[60] |
XU S L, SHIMADA K, MIZUTANI M, et al. Development of a novel 2D rotary ultrasonic texturing technique for fabricating tailored structures [J]. International Journal of Advanced Manufacturing Technology,2017,89:1161-1172. doi: 10.1007/s00170-016-9133-z
|
[61] |
LIANG Z Q, WANG X B, WU Y B, et al. Experimental study on brittle-ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain [J]. International Journal of Machine Tools and Manufacture,2013,71:41-51. doi: 10.1016/j.ijmachtools.2013.04.004
|
[62] |
WANG Q Y, LIANG Z Q, WANG X B, et al. Modelling and analysis of generation mechanism of micro-surface topography during elliptical ultrasonic assisted grinding [J]. Journal of Materials Processing technology,2020,279:116585. doi: 10.1016/j.jmatprotec.2019.116585
|
[63] |
马文举. 基于纵-扭复合超声辅助的陶瓷加工机理研究 [D]. 洛阳: 河南科技大学, 2020.
MA Wenju. Research on ceramic machining mechanism based on longitudinal-torsional ultrasonic assist [D]. Luoyang: Henan University of Science and Technology, 2020.
|
[64] |
曹小建, 吴昌将, 顾镇媛, 等. 超声冲击纳米化的研究现状与进展 [J]. 表面技术,2019,48(8):113-121. doi: 10.16490/j.cnki.issn.1001-3660.2019.08.015
CAO Xiaojian, WU Changjiang, GU Zhenyuan, et al. Research status and progress on ultrasonic impact nanocrystallization [J]. Surface Technology,2019,48(8):113-121. doi: 10.16490/j.cnki.issn.1001-3660.2019.08.015
|
[65] |
赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展 [J]. 航空学报,2020,41(10):023685. doi: 10.7527/S1000-6893.2020.23685
ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening: Progress in research and applications [J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):023685. doi: 10.7527/S1000-6893.2020.23685
|
[66] |
LI L, KIM M, LEE S, et al. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel [J]. Surface and Coatings Technology,2016,307:517-524. doi: 10.1016/j.surfcoat.2016.09.023
|
[67] |
马嘉明, 郑建明, 刘驰, 等. 超声振动冲击表面织构方法及试验研究 [J]. 兵器材料科学与工程,2020,43(1):62-67. doi: 10.14024/j.cnki.1004-244x.20191021.001
MA Jiaming, ZHENG Jianming, LIU Chi, et al. Ultrasonic vibration impact surface texture method and experimental study [J]. Ordnance Material Science and Engineering,2020,43(1):62-67. doi: 10.14024/j.cnki.1004-244x.20191021.001
|
[68] |
胡王杰. 基于超声冲击的不锈钢微织构制备装置研制与实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
HU Wangjie. Device development and experimental study of stainless steel microtexture manufacturing by ultrasonic impact [D]. Harbin: Harbin Institute of Technology, 2020.
|
[69] |
李礼, 朱有利, 吕光义. 超声深滚降低 TC4 钛合金表面粗糙度和修复表面损伤的作用 [J]. 稀有金属材料与工程,2009,38(2):339-342. doi: 10.3321/j.issn:1002-185X.2009.02.034
LI Li, ZHU Youli, LÜ Guangyi. Influence of ultrasonic deep rolling on reducing surface roughness and healing surface scar of TC4 titanium alloy [J]. Rare Metal Materials and Engineering,2009,38(2):339-342. doi: 10.3321/j.issn:1002-185X.2009.02.034
|
[70] |
赵建, 王兵, 刘战强. 旋转超声滚压加工中的滚压力与滚压深度及表面形貌研究 [J]. 兵工学报,2016,37(4):696-704. doi: 10.3969/j.issn.1000-1093.2016.04.018
ZHAO Jian, WANG Bing, LIU Zhanqiang. The investigation into burnishing force, burnishing depth and surface morphology in rotary ultrasonic burnishing [J]. Acta Armamentarii,2016,37(4):696-704. doi: 10.3969/j.issn.1000-1093.2016.04.018
|
[71] |
ZHENG J X, ZHU L X, GUO Y L, et al. Modeling, simulation, and prediction of surface topography in two-dimensional ultrasonic rolling 7075 Al-alloy [J]. The International Journal of Advanced Manufacturing Technology,2021,113:309-320. doi: 10.1007/s00170-021-06638-x
|
[72] |
盖鹏涛, 陈福龙, 尚建勤, 等. 喷丸强化对表面完整性影响的研究现状与发展 [J]. 航空制造技术,2016,20:16-21. doi: 10.16080/j.issn1671-833x.2016.20.016
GAI Pengtao, CHEN Fulong, SHANG Jianqin, et al. Recent situation and development trend of shot peening on surface integrity [J]. Aeronautical Manufacturing Technology,2016,20:16-21. doi: 10.16080/j.issn1671-833x.2016.20.016
|
[73] |
MAAWAD E, SANO Y, WAGNER L, et al. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys [J]. Materials Science and Engineering: A,2012,536:82-91. doi: 10.1016/j.msea.2011.12.072
|
[74] |
蔡晋, KIPLAGAT Collins Cherutich, 李威, 等. 超声喷丸 FGH97 粉末高温合金表面粗糙度试验与数值分析 [J]. 表面技术,2021,50(6):250-257. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.028
CAI Jin, KIPLAGAT Collins Cherutich, LI Wei, et al. Surface roughness numerical and test evaluation of FGH97 powder superalloy by ultrasonic shot peening [J]. Surface Technology,2021,50(6):250-257. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.028
|
[75] |
朱鹏飞, 严宏志, 陈志, 等. 齿轮齿面喷丸强化研究现状与展望 [J]. 表面技术,2020,49(4):113-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.014
ZHU Pengfei, YAN Hongzhi, CHEN Zhi, et al. Research status and prospect of shot peening of gear tooth flanks [J]. Surface Technology,2020,49(4):113-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.014
|
[76] |
曹腾, 路冬, 舒嵘, 等. 基于超声椭圆振动辅助车削的铝合金表面微织构仿真 [J]. 陕西师范大学学报(自然科学版),2018,46(4):50-57. doi: 10.15983/j.cnki.jsnu.2018.04.244
CAO Teng, LU Dong, SHU Zheng, et al. Simulation on surface micro texture of aluminium alloy based on ultrasonic elliptical vibration cutting [J]. Journal of Shaanxi Normal University (Natural Science Edition),2018,46(4):50-57. doi: 10.15983/j.cnki.jsnu.2018.04.244
|
[77] |
赵波. 硬脆材料超声珩磨系统及延性切削特征研究 [D]. 上海: 上海交通大学, 1999.
ZHAO Bo. Study on ultrasonic honing system and feature of ductile domain cutting of hard-brittle materials [D]. Shanghai: Shanghai Jiao Tong University, 1999.
|
[78] |
陶国灿. 超声振动辅助铣削鱼鳞状表面成形机理及表面性能研究 [D]. 济南: 山东大学, 2016.
TAO Guocan. Study on the forming mechanism and surface properties of ultrasonic vibration assisted milling for squamous surfaces [D]. Jinan: Shandong University, 2016.
|
[79] |
马超, 张建华, 陶国灿. 超声振动辅助铣削加工钛合金表面摩擦磨损性能研究 [J]. 表面技术,2017,46(8):115-119. doi: 10.16490/j.cnki.issn.1001-3660.2017.08.019
MA Chao, ZHANG Jianhua, TAO Guocan. Wear and friction properties of titanium alloy surface subject to ultrasonic vibration assisted milling [J]. Surface Technology,2017,46(8):115-119. doi: 10.16490/j.cnki.issn.1001-3660.2017.08.019
|
[80] |
曹腾. 超声椭圆振动辅助切削表面微织构及其摩擦性能研究 [D]. 南昌: 南昌大学, 2018.
CAO Teng. Study on micro texture and friction properties of ultrasonic elliptical vibration assisted cutting surface [D]. Nanchang: Nanchang University, 2018.
|
[81] |
ZHANG J J, ZHANG J G, ROSENKRANZ A, et al. Surface textures fabricated by laser surface texturing and diamond cutting - influence of texture depth on friction and wear [J]. Advanced Engineering Materials,2018,20(4):1700995. doi: 10.1002/adem.201700995
|
[82] |
ZHAO C Y, WANG X B, ZHAO B, et al. Microstructure of high-performance aluminum alloy surface processed by the single-excitation same-frequency longitudinal-torsional coupled ultrasonic vibration milling [J]. Materials,2018,11(10):1975. doi: 10.3390/ma11101975
|
[83] |
王耀宇. 摩擦副表面超声微织构加工技术研究 [D]. 太原: 中北大学, 2021.
WANG Yaoyu. Research on ultrasonic micro-texture processing technology of friction pair surface [D]. Taiyuan: North University of China, 2021.
|
[84] |
夏子文. 多维超声铣削Ti3Al金属间化合物表面微织构诱导机制研究 [D]. 焦作: 河南理工大学, 2021.
XIA Ziwen. Investigation into the induction mechanism of surface micro-texture in multi-dimension ultrasonic milling Ti3Al intermetallic compound [D]. Jiaozuo: Henan Polytechnic University, 2021.
|
[85] |
邢栋梁. 超声振动辅助铣削加工表面的摩擦学性能研究 [D]. 济南: 山东大学, 2012.
XING Dongliang. Study on tribological properities of ultrasonic vibration assisted milling surfaces [D]. Jinan: Shandong University, 2012.
|
[86] |
WEN Y Q, TANG J Y, ZHOU W, et al. Study on contact performance of ultrasonic-assisted grinding surface [J]. Ultrasonics,2019,91:193-200. doi: 10.1016/j.ultras.2018.08.009
|
[87] |
CHEN H F, TANG J Y, SHAO W, et al. An investigation on surface functional parameters in ultrasonic-assisted grinding of soft steel [J]. International Journal of Advanced Manufacturing Technology,2018,97(5-8):2697-2702. doi: 10.1007/s00170-018-2164-x
|
[88] |
LIU X F, WU D B, ZHANG J H. Fabrication of micro-textured surface using feed-direction ultrasonic vibration-assisted turning [J]. The International Journal of Advanced Manufacturing Technology,2018,97:3849-3857. doi: 10.1007/s00170-018-2082-y
|
[89] |
XU S L, SHIMADA K, MIZUTANI M, et al. Analysis of machinable structures and their wettability of rotary ultrasonic texturing method [J]. Chinese Journal of Mechanical Engineering,2016,29(6):1187-1192. doi: 10.3901/CJME.2016.0910.112
|
[90] |
赵重阳, 陆俊宇, 王晓博, 等. 超声纵扭辅助铣削高强铝合金表面润湿性能研究 [J]. 中国机械工程,2022,33(16):1912-1918 + 1927. doi: 10.3969/j.issn.1004-132X.2022.16.004
ZHAO Chongyang, LU Junyu, WANG Xiaobo, et al. Wettability of high-performance aluminum alloy surfaces machined longitudinal-torsion ultrasonic-assisted milling [J]. China Mechanical Engineering,2022,33(16):1912-1918 + 1927. doi: 10.3969/j.issn.1004-132X.2022.16.004
|
[91] |
GUO P, YANG Y. A novel realization of diffractive optically variable devices using ultrasonic modulation cutting [J]. CIRP Annals-Manufacturing Technology,2019,68:575-578. doi: 10.1016/j.cirp.2019.04.014
|
[92] |
WANG J J, WANG Y K, YANG Y. Fabrication of structurally colored basso-relievo with modulated elliptical vibration texturing [J]. Precision Engineering,2020,64:113-121. doi: 10.1016/j.precisioneng.2020.03.021
|