Citation: | DU Xinhao, LIU Zhihua, ZHANG Zhilei, DU cezhi, SUI Jianbo, WANG Chengyong. Functional surfaces of medical devices based on laser processing: a review[J]. Diamond & Abrasives Engineering, 2024, 44(2): 206-220. doi: 10.13394/j.cnki.jgszz.2023.0010 |
[1] |
AHMMED K, COLIN G, ANNE-MARIE K. Fabrication of micro/nano structures on metals by femtosecond laser micromachining [J]. Micromachines,2014,5(4):1219-1253. doi: 10.3390/mi5041219
|
[2] |
KIETZIG A M, HATZIKIRIAKOS S G, ENGLEZOS P. Ice friction: The effects of surface roughness, structure, and hydrophobicity [J]. Journal of Applied Physics,2009,106(2):97. doi: 10.1063/1.3173346
|
[3] |
ZORBA V, STRATAKIS E, BARBEROGLOU M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Advanced Materials,2008,20(21):4049-4054. doi: 10.1002/adma.200800651
|
[4] |
VOROBYEV A Y, GUO C. Metal pumps liquid uphill [J]. Applied Physics Letters,2009,94(22):224102. doi: 10.1063/1.3117237
|
[5] |
CUI Z, LU L , GUAN Y , et al. Enhancing SERS detection on biocompatable metallic substrate for diabetes diagnosing [J]. Optics Letters,2021,46(15):3801-3804. doi: 10.1364/OL.430044
|
[6] |
ZUPANCIC M, MOZE M, GREGORCICP, et al. Evaluation of enhanced nucleate boiling performance through wall-temperature distributions on PDMS-silica coated and non-coated laser textured stainless steel surfaces [J]. International Journal of Heat and Mass Transfer,2017,111:419-428. doi: 10.1016/j.ijheatmasstransfer.2017.03.128
|
[7] |
LEI S, DEVARAJAN S, CHANG Z. A study of micropool lubricated cutting tool in machining of mild steel [J]. Journal of Materials Processing Tech,2009,209(3):1612-1620. doi: 10.1016/j.jmatprotec.2008.04.024
|
[8] |
KUMAR B A, BABU P D, MARIMUTHU P, et al. Effect of laser surface texturing on tribological behaviour of grey cast iron [J]. International Journal of Surface Science and Engineering,2019,13(2/3):220. doi: 10.1504/IJSURFSE.2019.102381
|
[9] |
张群英, 严玉蓉. 复合材料在医疗器械中的应用 [J]. 中国医疗器械信息,2012,18(2):13-17. doi: 10.15971/j.cnki.cmdi.2012.02.018
ZHANG Qunying, YAN Yurong. The application of composite materials in the medical instrument [J]. China Medical Device Information,2012,18(2):13-17. doi: 10.15971/j.cnki.cmdi.2012.02.018
|
[10] |
卢立斌, 王海鹏, 管迎春, 等. 激光微加工技术制备生物医用器械的现状与进展 [J]. 中国激光,2017,44(1):65-79. doi: 10.3788/CJL201744.0102005
LU Libin, WANG Haipeng, GUAN Yingchun, et al. Laser microfabrication of biomedical devices [J]. Chinese Journal of Lasers,2017,44(1):65-79. doi: 10.3788/CJL201744.0102005
|
[11] |
LIU W, LIU S, WANG L. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications [J]. Coatings,2019,9(4):249. doi: 10.3390/coatings9040249
|
[12] |
王艳颖,宫苹,张健. 不同种植体表面性质对雪旺细胞生物学行为影响的研究 [J]. 华西口腔医学杂志,2021,39(3):279-285. doi: 10.7518/hxkq.2021.03.006
WANG Yanying, GONG Ping, ZHANG Jian. Effects of different implant surface properties on the biological behavior of Schwann cells [J]. West China Journal of Stomatology,2021,39(3):279-285. doi: 10.7518/hxkq.2021.03.006
|
[13] |
ZAFFORA A, FRANCO F D, VIRTÙ D, et al. Tuning of the Mg alloy AZ31 anodizing process for iodegradable implants [J]. Applied Materials and Interfaces,2021,13(11):12866-12876. doi: 10.1021/acsami.0c22933
|
[14] |
张一, 方均, 王茜, 等. 医用钽类植入物抗菌性能研究进展 [J]. 河北医科大学学报,2021,42(1):116-121. doi: 10.3969/j.issn.1007-3205.2021.01.025
ZHANG Yi, FANG Jun, WANG Qian, et al. Research progress on antibacterial properties of medical tantalum implants [J]. Journal of Hebei Medical University,2021,42(1):116-121. doi: 10.3969/j.issn.1007-3205.2021.01.025
|
[15] |
张力文, 陈华伟, 王炎,等. 基于树蛙脚掌湿黏附的仿生手术夹钳表面研究 [J]. 机械工程学报,2018,54(17):14-20. doi: 10.3901/JME.2018.17.014
ZHANG Liwen, CHEN Huawei, WANG Yan, et al. Bioinspired surgical grasper based on the strong wet attachment of tree frog's toe pads [J]. Journal of Mechanical Engineering,2018,54(17):14-20. doi: 10.3901/JME.2018.17.014
|
[16] |
江汪彪, 胡亚辉, 郑清春, 等. 基于微织构刀具的皮质骨钻削温度研究 [J]. 中国农机化学报,2016,37(11):207-211. doi: 10.13733/j.jcam.issn.2095-5553.2016.11.045
JIANG Wangbiao, HU Yahui, ZHENG Qingchun, et al. Study of drilling temperature on cortical bone based on micro-texture tool [J]. Journal of Chinese Agricultural Mechanization,2016,37(11):207-211. doi: 10.13733/j.jcam.issn.2095-5553.2016.11.045
|
[17] |
蔡彦坤, 祁星颖, 隋磊. 种植材料表面纳米级形貌对细胞成骨效应的影响 [J]. 实用口腔医学杂志,2019,35(6):891-894. doi: 10.3969/j.issn.1001-3733.2019.06.028
CAI Yankun, QI Xingying, SUI Lei. The influence of nanoscale morphology on the surface of implant materials on the osteogenic effect of cells [J]. Journal of Practical Stomatology,2019,35(6):891-894. doi: 10.3969/j.issn.1001-3733.2019.06.028
|
[18] |
CHANG H S, JEONG H, FURUKAWA K S, et al. The switching of focal adhesion maturation sites and actin filament activation for MSCs by topography of well-defined micropatterned surfaces [J]. Biomaterials,2013,34(7):1764-1771. doi: 10.1016/j.biomaterials.2012.11.031
|
[19] |
HUANG Q, ELKHOOLY T A, LIU X, et al. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells [J]. Colloids and Surfaces B:Biointerfaces,2016,145:37-45. doi: 10.1016/j.colsurfb.2016.04.031
|
[20] |
HOHMANN J K, FREYMANN G V. Influence of direct laser written 3D topographies on proliferation and differentiation of osteoblast-like cells: towards improved implant surfaces [J]. Advanced Functional Materials,2014,24(42):6573-6580. doi: 10.1002/adfm.201401390
|
[21] |
HU Y, DUAN J, YANG X, et al. Wettability and biological responses of titanium surface's biomimetic hexagonal microstructure [J]. Journal of Biomaterials Applications,2022,37(6):1112-1123. doi: 10.1177/08853282221121883
|
[22] |
ZHENG Q, MAO L, SHI Y, et al. Biocompatibility of Ti-6Al-4V titanium alloy implants with laser microgrooved surfaces [J]. Materials Technology,2020,37(12):2039-2048. doi: 10.1080/10667857.2020.1816011
|
[23] |
DUMAS V, GUIGNANDON A, VICO L, et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment [J]. Biomedical Materials,2015,10(5):055002. doi: 10.1088/1748-6041/10/5/055002
|
[24] |
LI C, YANG L, LIU N, et al. Bioinspired surface hierarchical microstructures of Ti6Al4V alloy with a positive effect on osteoconduction [J]. Surface and Coatings Technology,2020,388:125594. doi: 10.1016/j.surfcoat.2020.125594
|
[25] |
XU Y, LIU W, ZHANG G, et al. Friction stability and cellular behaviors on laser textured Ti–6Al–4V alloy implants with bioinspired micro-overlapping structures [J]. Journal of the Mechanical Behavior of Biomedical Materials,2020:103823.
|
[26] |
CARVALHO A, CANGUEarvalho, Liliana, et al. Femtosecond laser microstructured Alumina toughened Zirconia: A new strategy to improve osteogenic differentiation of hMSCs [J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2018,435:1237-1245. doi: 10.1016/j.apsusc.2017.11.206
|
[27] |
YU Z, YANG G, ZHANG W, et al. Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy [J]. Journal of Materials Processing Technology,2018,255:129-136. doi: 10.1016/j.jmatprotec.2017.12.009
|
[28] |
WANG Y, YU Z, LI K, et al. Study on the effect of surface characteristics of short-pulse laser patterned titanium alloy on cell proliferation and osteogenic differentiation [J]. Materials Science and Engineering C,2021,128:112349. doi: 10.1016/j.msec.2021.112349
|
[29] |
VEERACHAMY S, YARLAGADDA T, MANIVASAGAM G, et al. Bacterial adherence and biofilm formation on medical implants: A review. [J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,2014,228(10):1083-99. doi: 10.1177/0954411914556137
|
[30] |
贾曼, 金文姬, 李娜, 等. 骨科患者手术植入物感染的相关因素分析与预防 [J]. 中华医院感染学杂志,2017,27(23):5391-5394. doi: 10.11816/cn.ni.2017-171610
JIA Man, JIN Wenji, LI Na, et al. Related factors analysis and prevention of surgical implant infections in orthopedic patients [J]. Chinese Journal of Nosocomiology,2017,27(23):5391-5394. doi: 10.11816/cn.ni.2017-171610
|
[31] |
FERRARIS S, SPRIANO S. Antibacterial titanium surfaces for medical implants [J]. Materials Science and Engineering: C,2016,61:965-978. doi: 10.1016/j.msec.2015.12.062
|
[32] |
JENKINS J, MANTELL J, NEAL C, et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress [J]. Nature Communications,2020,11:1626. doi: 10.1038/s41467-020-15471-x
|
[33] |
JAGGESSAR A, SHAHALI H, MATHEW A, et al. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants [J]. Journal of Nanobiotechnology,2017,15(1):64. doi: 10.1186/s12951-017-0306-1
|
[34] |
CUNHA A, ELIE A M, PLAWINSKI L, et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation [J]. Applied Surface Science,2016,360:485-493. doi: 10.1016/j.apsusc.2015.10.102
|
[35] |
PETER A, LUTEY A, FAAS S, et al. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces [J]. Optics & Laser Technology,2019,123:105954. doi: 10.1016/j.optlastec.2019.105954
|
[36] |
VADAKKUMPURATH S, VENUGOPAL A N, ULLATTIL S. Influence of micro-textures on antibacterial behaviour of titanium-based implant surfaces: In vitro studies [J]. Biosurface and Biotribology,2019,5(1):20-23. doi: 10.1049/bsbt.2018.0023
|
[37] |
王芳, 程翔, 刘桂英, 等. 牙科用微弧氧化后锆基非晶合金的组织相容性研究 [J]. 口腔医学,2016,36(9):784-787, 800. doi: 10.13591/j.cnki.kqyx.2016.09.004
WANG Fang, CHENG Xiang, LIU Guiying, et al. Histocompatibility evaluation of Zr-based bulk metallic glass with micro-arc oxidation for dental restoration [J]. Stomatology,2016,36(9):784-787, 800. doi: 10.13591/j.cnki.kqyx.2016.09.004
|
[38] |
HUANG H, ZHANG P, YU Z, et al. Effects of periodic surface structures induced by femtosecond laser irradiation on the antibacterial properties of Zr-based amorphous material [J]. International Journal for Light and Electron Optics,2022,268:169760. doi: 10.1016/j.ijleo.2022.169760
|
[39] |
LUO X, YAO S, ZHANG H, et al. Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation [J]. Optics & Laser Technology,2020,124:105973. doi: 10.1016/j.optlastec.2019.105973
|
[40] |
ROMOLI L, LAZZINI G, LUTEY A, et al. Influence of ns laser texturing of AISI 316L surfaces for reducing bacterial adhesion [J]. CIRP Annals - Manufacturing Technology,2020,69(1):529-532. doi: 10.1016/j.cirp.2020.04.003
|
[41] |
XU J, JI M, LI L, et al. Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing [J]. Ceramics International,2022,48(3):3702-3710. doi: 10.1016/j.ceramint.2021.10.152
|
[42] |
SHAIKH S, KEDIA S, SINGH D, et al. Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance [J]. Journal of Laser Applications,2019,31(1):022011. doi: 10.2351/1.5081106
|
[43] |
王鲁宁, 刘丽君, 岩雨, 等. 蛋白质吸附对医用金属材料体外腐蚀行为的影响 [J]. 金属学报,2021,57(1):1-15. doi: 10.11900/0412.1961.2020.00198
WANG Luning, LIU Lijun, YAN Yu, et al. Influences of protein adsorption on the in vitro corrosion of biomedical metals [J]. Acta Metallurgica Sinica,2021,57(1):1-15. doi: 10.11900/0412.1961.2020.00198
|
[44] |
TALHA M, MA Y, KUMAR P, et al. Role of protein adsorption in the bio corrosion of metallic implants – A review [J]. Colloids and surfaces B:Biointerfaces,2019,176:494-506. doi: 10.1016/j.colsurfb.2019.01.038
|
[45] |
WANG C, ZHANG G, LI Z, et al . Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants [J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,90:460-471. doi: 10.1016/j.jmbbm.2018.10.031
|
[46] |
王俊鸿. 骨科植入物的抗腐蚀性能 [J]. 中国组织工程研究,2012,16(9):1676-1679. doi: 10.3969/j.issn.1673-8225.2012.09.035
WANG Junhong. Corrosion resistance of orthopedic implants [J]. Chinese Journal of Tissue Engineering Research,2012,16(9):1676-1679. doi: 10.3969/j.issn.1673-8225.2012.09.035
|
[47] |
GUPTA R K, ANANDKUMAR B, CHOUBEY A, et al. Antibacterial and corrosion studies on nanosecond pulse laser textured 304L stainless steel surfaces [J]. Lasers in Manufacturing & Materials Processing,2019,6(3):332-343.
|
[48] |
LU Y, GUAN Y C, LI Y, et al. Nanosecond laser fabrication of superhydrophobic surface on 316L stainless steel and corrosion protection application [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,604:125259. doi: 10.1016/j.colsurfa.2020.125259
|
[49] |
ANDRZEJ GRABOWSKI, M SOZAŃSKA, ADAMIAK M. Laser surface texturing of Ti6Al4V alloy, stainless steel and aluminium silicon alloy [J]. Applied Surface Science,2018,417:117-123. doi: 10.1016/j.apsusc.2018.06.060
|
[50] |
MUHAMMAD S, NATALIA B, RICCARDO P, et al. Tailoring surface properties, biocompatibility and corrosion behavior of stainless steel by laser induced periodic surface treatment towards developing biomimetic stents [J]. Surfaces and Interfaces,2022,34:102365. doi: 10.1016/j.surfin.2022.102365
|
[51] |
XU Y, LI Z, ZHANG G, et al. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing [J]. Tribology International,2019,134:352-364. doi: 10.1016/j.triboint.2019.01.040
|
[52] |
KUCZYNSKA-ZEMLA D, SOTNICZUK A, PISAREK M, et al. Corrosion behavior of titanium modified by direct laser interference lithography [J]. Surface & Coatings Technology,2021,418:127219. doi: 10.1016/j.surfcoat.2021.127219
|
[53] |
WANG C, TIAN P, CAO H, et al. Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing [J]. ACS Omega,2022,7(35):31081-31097. doi: 10.1021/acsomega.2c03166
|
[54] |
HAN P, CHE D, PALLAV K, et al. Models of the cutting edge geometry of medical needles with applications to needle design [J]. International Journal of Mechanical Sciences,2012,65(1):157-167. doi: 10.1016/j.ijmecsci.2012.09.014
|
[55] |
TSAI P H, LI T H, HSU K T, et al. Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades [J]. Thin Solid Films,2016,618:36-41. doi: 10.1016/j.tsf.2016.05.020
|
[56] |
NISHIZAKA C, NISHIKAWA M, YATA T, et al. Inhibition of surgical trauma-enhanced peritoneal dissemination of tumor cells by human catalase derivatives in mice [J]. Free Radical Biology and Medicine,2011,51(3):773-779. doi: 10.1016/j.freeradbiomed.2011.05.025
|
[57] |
SADJADI H, HASHTRUDI-ZAAD K, FICHTINGER G. Needle deflection estimation: Prostate brachytherapy phantom experiments [J]. International Journal of Computer Assisted Radiology and Surgery,2014,9(6):921-929. doi: 10.1007/s11548-014-0985-0
|
[58] |
SAFAVI-ABBASI S, MORON F, SUN H, et al. Techniques and long-term outcomes of cotton-clipping and cotton-augmentation strategies for management of cerebral aneurysms [J]. Journal of Neurosurgery,2016,125(3):720-729. doi: 10.3171/2015.7.JNS151165
|
[59] |
WANG X, HAN P, KAG M, et al. Surface-blended texturing of medical needles for friction reduction using a picosecond laser [J]. Applied Physics A,2016,122(4):1-9. doi: 10.1007/s00339-016-9892-2
|
[60] |
WANG X, GIOVANNINI M, XING Y, et al. Fabrication and tribological behaviors of corner-cube-like dimple arrays produced by laser surface texturing on medical needles [J]. Tribology International,2015,92:553-558. doi: 10.1016/j.triboint.2015.07.042
|
[61] |
PAN C, XU C, HUANG Z, et al. Antifriction effect of 316L stainless steel textured surface with superhydrophilic properties in brain tissue insertion [J]. Materials Research Express,2021,8(10):105401. doi: 10.1088/2053-1591/ac2a61
|
[62] |
BUTLER-SMITH P, SEE T L, HUMPHREY E, et al. A comparison of the tactile friction and cutting performance of textured scalpel blades modified by direct laser writing and direct laser interference patterning processes [J]. Procedia CIRP,2022,111:657-661. doi: 10.1016/j.procir.2022.08.005
|
[63] |
VELASQUEZ T, HAN P, CAO J, et al. Feasibility of laser surface texturing for friction reduction in surgical blades [C]// ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference, June 10-14, 2013, Madison, Wisconsin. New York: ASME, c2013: MSEC2013-1193, V001T01A009
|
[64] |
ITTA I, TSUKIYAMA Y, NOMURA S, et al. Frictional characteristics of clamp surfaces of aneurysm clips finished by laser processing [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing,2016,10(2):JAMDSM0026. doi: 10.1299/jamdsm.2016jamdsm0026
|
[65] |
LI C, YANG Y, YANG L, et al. Biomimetic anti-adhesive surface microstructures on electrosurgical blade fabricated by long-pulse laser inspired by pangolin scales [J]. Micromachines,2019,10(12):816. doi: 10.3390/mi10120816
|
[66] |
LI C, YANG L J, YANG C C, et al. Biomimetic anti-adhesive surface micro-structures of electrosurgical knife fabricated by fibre laser [J]. Journal of Laser Micro Nanoengineering,2018,13(3):309-313. doi: 10.2961/jlmn.2018.03.0028
|
[67] |
LU J, WANG X, HUANG Y, et al. Fabrication and cutting performance of bionic micro-serrated scalpels based on the miscanthus leaves [J]. Tribology International,2020,145:106162. doi: 10.1016/j.triboint.2020.106162
|
[68] |
MEAKIN L B, MURRELL J C, DORAN I C P, et al. Electrosurgery reduces blood loss and immediate postoperative inflammation compared to cold instruments for midline celiotomy in dogs: A randomized controlled trial [J]. Veterinary Surgery,2017,46(4):515-519. doi: 10.1111/vsu.12641
|
[69] |
ZHENG L, WAN J, LONG Y, et al. Effect of high-frequency electric field on the tissue sticking of minimally invasive electrosurgical devices [J]. Royal Society Open Science,2018,5(7):180125. doi: 10.1098/rsos.180125
|
[70] |
SUTTON P A, AWAD S, PERKINS A C, et al. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™ and the Ligasure™ [J]. British Journal of Surgery,2010,97(3):428-433. doi: 10.1002/bjs.6901
|
[71] |
TESLER A B, KIM P, KOLLE S, et al. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel [J]. Nature Communications,2015,6(1):8649. doi: 10.1038/ncomms9649
|
[72] |
ZHOU C, LU J, WANG X. Adhesion behavior of textured electrosurgical electrode in an electric cutting process [J]. Coatings,2020,10(6):596. doi: 10.3390/coatings10060596
|
[73] |
LIN C C, LIN H J, LIN Y H, et al. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2017,105(4):865-873. doi: 10.1002/jbm.b.33613
|
[74] |
HAN Z, FU J, FENG X, et al. Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating [J]. RSC Advances,2017,7(72):45287-45293. doi: 10.1039/C7RA08184G
|
[75] |
LIU Z, WU F, GU H, et al. Adhesion failure and anti-adhesion bionic structure optimization of surgical electrodes in soft tissue cutting [J]. Journal of Manufacturing Processes,2023,89:444-457. doi: 10.1016/j.jmapro.2023.01.071
|
[76] |
LI K, YAO W, XIE Y, et al. A strongly hydrophobic and serum-repelling surface composed of CrN films deposited on laser-patterned microstructures that was optimized with an orthogonal experiment [J]. Surface and Coatings Technology,2020,391:125708. doi: 10.1016/j.surfcoat.2020.125708
|
[77] |
LI K, XIE Y, LIANG L, et al. Wetting behavior investigation of a complex surface prepared by laser processing combined with carbon films coating [J]. Surface and Coatings Technology,2019,378:124989. doi: 10.1016/j.surfcoat.2019.124989
|
[78] |
ZHANG J, LI G, LI D, et al. In vivo blood-repellent performance of a controllable facile-generated superhydrophobic surface [J]. ACS Applied Materials & Interfaces,2021,13(24):29021-29033.
|