Citation: | WANG Shuixian, DENG Zhaohui, GE Jimin, LIU Wei. Research progress of point cloud registration technology based on industrial 3D inspection[J]. Diamond & Abrasives Engineering, 2023, 43(3): 285-297. doi: 10.13394/j.cnki.jgszz.2022.0164 |
[1] |
李文辉, 温学杰, 李秀红, 等. 航空发动机叶片再制造技术的应用及其发展趋势 [J]. 金刚石与磨料磨具工程,2021,41(4):8-18.
LI Wenhui, WEN Xuejie, LI Xiuhong, et al. Application and development trend of aero-engine blade remanufacturing technology [J]. Diamond & Abrasives Engineering,2021,41(4):8-18.
|
[2] |
石广丰, 王雪, 王淑坤, 等. 基于机器视觉的金刚石原石检测系统 [J]. 金刚石与磨料磨具工程,2019(6):7-12.
SHI Guangfeng, WANG Xue, WANG Shukun, et al. Diamond raw detection system based on machine vision [J]. Diamond & Abrasives Engineering,2019(6):7-12.
|
[3] |
李雷辉. 基于3D视觉传感器的工业零件表面质量检测关键技术研究 [D]. 天津: 天津理工大学, 2021.
LI Leihui. Research o key techniques of the industrial parts, surface inspection based on 3d vision [D]. Tianjin: Tianjin University of Technology, 2021.
|
[4] |
肖明, 鲍永亮, 颜仲新. 基于点特征的图像配准方法综述 [J]. 兵工学报,2015,36(S2):326-340.
XIAO Ming, BAO Yongliang, YAN Zhongxin. Point feature-based image registration: A survey [J]. Acta Armamentarii,2015,36(S2):326-340.
|
[5] |
LAI J Y, UENG W D, YAO C Y. Registration and data merging for multiple sets of scan data [J]. International Journal of Advanced Manufacturing Technology,1999,15(1):54-63. doi: 10.1007/s001700050039
|
[6] |
POMERLEAU F, COLAS F, SIEGWART R. A review of point cloud registration algorithms for mobile robotics [J]. Foundations and Trends in Robotics,2015,4(1):1-104.
|
[7] |
张政. 点云数据配准算法研究 [D]. 济南: 山东大学, 2008.
ZHANG Zheng. Research on registration algorithm of point cloud data [D]. Jinan: Shandong University, 2008.
|
[8] |
CHENG L, CHEN S, LIU X, et al. Registration of laser scanning point clouds: A review [J]. Sensors,2018,18(5):1641. doi: 10.3390/s18051641
|
[9] |
张步. 三维激光点云数据配准研究 [D]. 西安: 西安科技大学, 2015.
ZHANG Bu. Research on 3D laser poing cloud registration [D]. Xi'an: Xi'an University of Science and Technology, 2015
|
[10] |
CHENG X, LI Z, ZHONG K, et al. An automatic and robust point cloud registration framework based on view-invariant local feature descriptors and transformation consistency verification [J]. Optics and Lasers in Engineering,2017,98:37-45. doi: 10.1016/j.optlaseng.2017.05.011
|
[11] |
YANG J, QUAN S, WANG P, et al. Evaluating local geometric feature representations for 3D rigid data matching [J]. IEEE Transactions on Image Processing,2019,29:2522-2535. doi: 10.1109/TIP.2019.2959236
|
[12] |
BESL P J, MCKAY N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. doi: 10.1109/34.121791
|
[13] |
CHEN Y, MEDIONI G. Object modeling by registration of multiple range images [J]. Image and Vision Computing,1992,10(3):145-155. doi: 10.1016/0262-8856(92)90066-C
|
[14] |
RUSINKIEWICZ S. A symmetric objective function for ICP [J]. ACM Transactions on Graphics,2019,38(4):1-7.
|
[15] |
王建军, 卢云鹏, 张荠匀, 等. 实现激光点云高效配准的ICP优化及性能验证 [J]. 红外与激光工程,2021,50(10):309-315.
WANG Jianjun, LU Yunpeng, ZHANG Jiyun, et al. Optimization and performance verification of high efficiency ICP registration for laser point clouds [J]. Infrared and Laser Engineering,2021,50(10):309-315.
|
[16] |
LIU Y. Automatic registration of overlapping 3D point clouds using closest points [J]. Image and Vision Computing,2006,24(7):762-781. doi: 10.1016/j.imavis.2006.01.009
|
[17] |
LIU Y. Constraints for closest point finding [J]. Pattern Recognition Letters,2008,29(7):841-851. doi: 10.1016/j.patrec.2007.12.004
|
[18] |
GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al. Geometrically stable sampling for the ICP algorithm: Fourth international conference on 3-D digital imaging and modeling [C]. Banff: IEEE, 2003: 260-267.
|
[19] |
WEIK S. Registration of 3-D partial surface models using luminance and depth information: International conference on recent advances in 3-D digital imaging and modeling [C]. Ottawa: IEEE, 1997: 93-100.
|
[20] |
任伟建, 高梦宇, 高铭泽, 等. 基于混合算法的点云配准方法研究 [J]. 吉林大学学报(信息科学版),2019,37(4):408-416.
REN Weijian, GAO Mengyu, GAO Mingze, et al. Research on point cloud registration method based on hybrid algorithm [J]. Journal of Jilin University (Information Science Edition),2019,37(4):408-416.
|
[21] |
代许松, 花向红, 田朋举, 等. 一种基于轴向偏离比的点云配准方法 [J]. 测绘科学,2021,46(12):98-105.
DAI Xusong, HUA Xianghong, TIAN Pengju, et al. A point cloud registration method based on axial deviation ratio [J]. Science of Surveying and Mapping,2021,46(12):98-105.
|
[22] |
CHETVERIKOV D, STEPANOV D, KRSEK P. Robust euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm [J]. Image and Vision Computing,2005,23(3):299-309. doi: 10.1016/j.imavis.2004.05.007
|
[23] |
HAN B, WU W, WANG Y, et al. The semi-dense ICP algorithm based on the sift feature points neighborhood [J]. Journal of Physics: Conference Series, 2020, 1631: 12-58
|
[24] |
AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration [J]. ACM Transactions on Graphics,2008,27(3):1-10.
|
[25] |
MELLADO N, AIGER D, MITRA N J. Super 4PCS fast global pointcloud registration via smart indexing [J]. Eurographics,2014,33(5):205-215.
|
[26] |
鲁铁定, 袁志聪, 郑坤. 结合尺度不变特征的Super 4PCS点云配准方法 [J]. 遥感信息,2019,34(5):15-20. doi: 10.3969/j.issn.1000-3177.2019.05.005
LU Tieding, YUAN Zhicong, ZHENG Kun. Super 4PCS point cloud registration algorithm combining scale invariant features [J]. Remote Sensing Information,2019,34(5):15-20. doi: 10.3969/j.issn.1000-3177.2019.05.005
|
[27] |
陆军, 范哲君, 王婉佳. 点邻域信息加权的点云快速拼接算法 [J]. 计算机辅助设计与图形学学报,2019,31(7):1238-1246.
LU Jun, FAN Zhejun, WANG Wanjia. Fast point cloud splicing algorithm based on weighted neighborhood information of points [J]. Journal of Computer-Aided Design & Computer Graphics,2019,31(7):1238-1246.
|
[28] |
XU Z, XU E, ZHANG Z, et al. Multiscale sparse features embedded 4-points congruent sets for global registration of TLS point clouds [J]. IEEE Geoscience and Remote Sensing Letters,2018,16(2):286-290.
|
[29] |
刘世光, 王海荣, 刘锦. 快速四点一致性点云粗配准算法 [J]. 山东大学学报(工学版),2019,49(2):1-7.
LIU Shiguang, WANG Hairong, LIU Jin. Fast 4-points congruent sets for coarse registration of 3D point cloud [J]. Journal of Shandong University (Engineering Science),2019,49(2):1-7.
|
[30] |
汪霞, 赵银娣, 王坚. 一种低重叠率激光点云的配准方法 [J]. 测绘科学,2018,43(12):130-136.
WANG Xia, ZHAO Yindi, WANG Jian. A registration method of laser point cloud with low overlap [J]. Science of Surveying and Mapping,2018,43(12):130-136.
|
[31] |
HUANG J, KWOK T H, ZHOU C. V4PCS: Volumetric 4PCS algorithm for global registration [J]. Journal of Mechanical Design, 2017, 139(11): 4037477.
|
[32] |
DA SILVA J P, BORGES D L, DE BARROS VIDAL F. A dynamic approach for approximate pairwise alignment based on 4-points congruence sets of 3D points: 18th IEEE international conference on image processing [C]. Brussels: IEEE, 2011: 889-892.
|
[33] |
BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):509-522. doi: 10.1109/34.993558
|
[34] |
RUSU R B, BLODOW N, MARTON Z C. Aligning point cloud views using persistent feature histograms: 2008 IEEE/RSJ international conference on intelligent robots and systems [C]. Nice: IEEE, 2008: 3384-3391.
|
[35] |
FROME A, HUBER D, KOLLURI R, et al. Recognizing objects in range data using regional point descriptors [J]. Lecture Notes in Computer Science, 2004,3023(1):224-237.
|
[36] |
范莹, 白瑞林, 王秀平, 等. 改进型形状上下文的工件立体匹配方法 [J]. 激光技术,2016,40(6):814-819.
FAN Ying, BAI Ruilin, WANG Xiuping, et al. Stereo matching algorithm of workpiece images based on improved shape context [J]. Laser Technology,2016,40(6):814-819.
|
[37] |
化春键, 熊雪梅, 陈莹. 基于形状上下文的工件边缘轮廓点匹配 [J]. 光电子·激光,2018,29(6):634-638.
HUA Chunjian, XIONG Xuemei, CHEN Ying. Shape matching of workpiece edge based on shape context [J]. Journal of Optoelectronics·Laser,2018,29(6):634-638.
|
[38] |
郑丹晨, 韩敏. 基于改进典型形状上下文特征的形状识别方法 [J]. 计算机辅助设计与图形学学报,2013,25(2):215-220.
ZHENG Danchen, HAN Min. Improved shape recognition method based on representative shape context [J]. Journal of Computer-Aided Design & Computer Graphics,2013,25(2):215-220.
|
[39] |
吴晓雨, 何彦, 杨磊, 等. 基于改进形状上下文特征的二值图像检索 [J]. 光学精密工程,2015,23(1):302-309. doi: 10.3788/OPE.20152301.0302
WU Xiaoyu, HE Yan, YANG Lei, et al. Binary image retrieval based on improved shape context algorithm [J]. Optics and Precision Engineering,2015,23(1):302-309. doi: 10.3788/OPE.20152301.0302
|
[40] |
赵键, 孙即祥, 李智勇, 等. 基于相对形状上下文和谱匹配方法的点模式匹配算法 [J]. 电子与信息学报,2010,32(10):2287-2293.
ZHAO Jian, SUN Jixiang, LI Zhiyong, et al. Point pattern matching algorithm based on relative shape context and spectral matching method [J]. Journal of Electronics & Information Technology,2010,32(10):2287-2293.
|
[41] |
WEI E B, LIU S B, WANG Z Z, et al. Emissivity measurements of foam-covered water surface at l-band for low water temperatures [J]. Remote Sensing,2014,6(11):10913-10930. doi: 10.3390/rs61110913
|
[42] |
SCHEELER R, POPOVIC Z. A 1.4 GHz MMIC active cold noise source: 2013 IEEE Compound Semiconductor Integrated Circuit Symposium [C]. Monterey: IEEE, 2013: 13-16.
|
[43] |
TOMBARI F, SALTI S, DI S L. Unique shape context for 3D data description: The ACM workshop on 3D object retrieval [C]. Firenze: ACM, 2010: 57-62.
|
[44] |
RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration: 2009 IEEE International Conference on Robotics and Automation [C]. Kobe: IEEE, 2009: 3212-3217.
|
[45] |
朱琛琛. 基于ICP算法的点云配准研究 [D]. 郑州: 郑州大学, 2019.
ZHU Chenchen. Point cloud registration based on ICP algorithm research [D]. Zhengzhou: Zhengzhou University, 2019.
|
[46] |
陆军, 彭仲涛. 基于快速点特征直方图的特征点云迭代插值配准算法 [J]. 国防科技大学学报,2014,36(6):12-17.
LU Jun, PENG Zhongtao. Iterative interpolation point cloud registration algorithm based on fast point feature histograms [J]. Journal of National University of Defense Technology,2014,36(6):12-17.
|
[47] |
WU L, WANG G, HU Y. Iterave closest point registration for fast point feature histogram features of a volume density optimization algorithm [J]. Measurement and Control,2020,53(1/2):29-39. doi: 10.1177/0020294019878869
|
[48] |
吴飞, 赵新灿, 展鹏磊, 等. 自适应邻域选择的FPFH特征提取算法 [J]. 计算机科学,2019,46(2):266-270. doi: 10.11896/j.issn.1002-137X.2019.02.041
WU Fei, ZHAO Xincan, ZHAN Penglei, et al. FPFH feature extraction algorithm based on adaptive neighborhood selection [J]. Computer Science,2019,46(2):266-270. doi: 10.11896/j.issn.1002-137X.2019.02.041
|
[49] |
赵明富, 曹利波, 宋涛, 等. 三维点云配准中FPFH邻域半径自主选取算法 [J]. 激光与光电子学进展,2021,58(6):123-131.
ZHAO Mingfu, CAO Libo, SONG Tao, et al. Independent method for selecting radius of FPFH neighborhood in 3d point cloud registration [J]. Laser & Optoelectronics Progress,2021,58(6):123-131.
|
[50] |
LIU Y, KONG D, ZHAO D, et al. A point cloud registration algorithm based on feature extraction and matching [J]. Mathematical Problems in Engineering, 2018, 2018: 1-9.
|
[51] |
刘剑, 白迪. 基于特征匹配的三维点云配准算法 [J]. 光学学报,2018,38(12):240-247.
LIU Jian, BAI Di. 3D point cloud registration algorithm based on feature matching [J]. Acta Optica Sinica,2018,38(12):240-247.
|
[52] |
庄祉昀, 张军, 孙广富. 用于三维点云表示的扩展点特征直方图算法 [J]. 国防科技大学学报,2016,38(6):124-129. doi: 10.11887/j.cn.201606020
ZHUANG Zhiyun, ZHANG Jun, SUN Guangfu. Extended point feature histograms for 3D point cloud representation [J]. Journal of National University of Defense Technology,2016,38(6):124-129. doi: 10.11887/j.cn.201606020
|
[53] |
BIBER P, STRASSER W. The normal distributions transform: A new approach to laser scan matching: 2003 IEEE/RSJ international conference on intelligent robots and systems [C]. Las Vegas: IEEE, 2003: 2743-2748.
|
[54] |
MAGNUSSON M, LILIENTHAL A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT [J]. Journal of Field Robotics,2007,24(10):803-827. doi: 10.1002/rob.20204
|
[55] |
赵凯, 朱愿, 王任栋. 基于改进NDT算法的城市场景三维点云配准 [J]. 军事交通学院学报,2019,21(3):80-84.
ZHAO Kai, ZHU Yuan, WANG Rendong. Urban scene 3D point cloud registration based on improved NDT algorithm [J]. Journal of Academy of Military Transportation,2019,21(3):80-84.
|
[56] |
DAS A, WASLANDER S L. Scan registration with multi-scale k-means normal distributions transform: 2012 IEEE/RSJ international conference on intelligent robots and systems [C]. Vilamoura-Algarve: IEEE, 2012.
|
[57] |
DAS A, WASLANDER S L. Scan registration using segmented region growing NDT [J]. The International Journal of Robotics Research,2014,33(13):1645-1663. doi: 10.1177/0278364914539404
|
[58] |
MYRONENKO A, SONG X. Point set registration: Coherent point drift [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275. doi: 10.1109/TPAMI.2010.46
|
[59] |
YANG X S, DEB S. Cuckoo search via levy flights: 2009 world congress on nature & biologically inspired computing [C]. Coimbatore: IEEE, 2009: 210-214.
|
[60] |
ZHANG Y, WANG L, WU Q. Modified adaptive cuckoo search (MACS) algorithm and formal description for global optimisation [J]. International Journal of Computer Application in Technology,2012,44(2):73-79. doi: 10.1504/IJCAT.2012.048675
|
[61] |
张永韡, 汪镭, 吴启迪. 动态适应布谷鸟搜索算法 [J]. 控制与决策,2014,29(4):617-622.
ZHANG Yongwei, WANG Lei, WU Qidi. Dynamic adaptation cuckoo search algorithm [J]. Control and Decision,2014,29(4):617-622.
|
[62] |
王李进, 尹义龙, 钟一文. 逐维改进的布谷鸟搜索算法 [J]. 软件学报,2013,24(11):2687-2698.
WANG Lijin, YIN Yilong, ZHONG Yiwen. Cuckoo search algorithm with dimension by dimension improvement [J]. Journal of Software,2013,24(11):2687-2698.
|
[63] |
林要华, 王维. 基于逐维策略的布谷鸟搜索增强算法 [J]. 计算机工程与科学,2017,39(1):165-172. doi: 10.3969/j.issn.1007-130X.2017.01.023
LIN Yaohua, WANG Wei. An enhanced cuckoo search algorithm based on dimension by dimension strategy [J]. Computer Engineering & Science,2017,39(1):165-172. doi: 10.3969/j.issn.1007-130X.2017.01.023
|
[64] |
GHODRATI A, LOTFI S. A hybrid CS/PSO algorithm for global optimization [J]. Lecture Notes in Computer Science, 2012,7198(1):89-98.
|
[65] |
WANG F, LUO L, HE X, et al. Hybrid optimization algorithm of PSO and cuckoo search: 2011 2nd international conference on artificial intelligence, management science and electronic commerce(AIMSEC) [C]. Dengleng: IEEE, 2011: 1172-1175.
|
[66] |
VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for global optimization [J]. International Journal of Communications and Information Technology,2011,1(1):31-44.
|
[67] |
WALTON S, HASSAN O, MORGAN K, et al. Modified cuckoo search: A new gradient free optimisation algorithm [J]. Chaos, Solitons & Fractals,2011,44(9):710-718.
|
[68] |
KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization,2007,39(3):459-471. doi: 10.1007/s10898-007-9149-x
|
[69] |
ZHU G, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization [J]. Applied Mathematics and Computation,2010,217(7):3166-3173. doi: 10.1016/j.amc.2010.08.049
|
[70] |
BANHARNSAKUN A, ACHALAKUL T, SIRINAOVAKUL B. The best-so-far selection in artificial bee colony algorithm [J]. Applied Soft Computing,2011,11(2):2888-2901. doi: 10.1016/j.asoc.2010.11.025
|
[71] |
AKAY B, KARABOGA D. A modified artificial bee colony algorithm for real-parameter optimization [J]. Information Sciences,2012,192:120-142. doi: 10.1016/j.ins.2010.07.015
|
[72] |
BANSAL J C, SHARMA H, ARYA K V, et al. Self-adaptive artificial bee colony [J]. Optimization,2014,63(10):1513-1532. doi: 10.1080/02331934.2014.917302
|
[73] |
GAO W, LIU S. A modified artificial bee colony algorithm [J]. Computers & Operations Research,2012,39(3):687-697.
|
[74] |
GAO W, LIU S. Improved artificial bee colony algorithm for global optimization [J]. Information Processing Letters,2011,111(17):871-882. doi: 10.1016/j.ipl.2011.06.002
|
[75] |
LI G, NIU P, XIAO X. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization [J]. Applied Soft Computing,2012,12(1):320-332. doi: 10.1016/j.asoc.2011.08.040
|
[76] |
XIANG W, MA S, AN M. Habcde: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution [J]. Applied Mathematics and Computation,2014,238:370-386. doi: 10.1016/j.amc.2014.03.055
|
[77] |
KANG F, LI J, MA Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions [J]. Information Sciences,2011,181(16):3508-3531. doi: 10.1016/j.ins.2011.04.024
|
[78] |
WU B, QIAN C, NI W, et al. Hybrid harmony search and artificial bee colony algorithm for global optimization problems [J]. Computers & Mathematics with Applications,2012,64(8):2621-2634.
|
[79] |
QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation: 30th IEEE conference on computer vision and pattern recognition [C]. Honolulu: IEEE, 2017: 77-85.
|
[80] |
李建微, 占家旺. 三维点云配准方法研究进展 [J]. 中国图象图形学报,2022,27(2):349-367.
LI Jianwei, ZHAN Jiawang. Review on 3D point cloud registration method [J]. Journal of Image and Graphics,2022,27(2):349-367.
|
[81] |
QI C R, YI L, SU H, et al. PointNet + + : Deep hierarchical feature learning on point sets in a metric space [J]. Computer Science, 2017: ArXiv 1706.02413.
|
[82] |
LU W, WAN G, ZHOU Y, et al. DeepVCP: An end-to-end deep neural network for point cloud registration: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 12-21.
|
[83] |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition [J]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953.
|
[84] |
舒程珣, 何云涛, 孙庆科. 基于卷积神经网络的点云配准方法 [J]. 激光与光电子学进展,2017,54(3):129-137.
SHU Chengxun, HE Yuntao, SUN Qingke. Point cloud registration based on convolutional neural network [J]. Laser & Optoelectronics Progress,2017,54(3):129-137.
|
[85] |
WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds [J]. Acm Transactions on Graphics,2019,38(5):1-12.
|
[86] |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: Flexible and deformable convolution for point clouds: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 6411-6420.
|
[87] |
XU M, DING R, ZHAO H, et al. PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds: IEEE/CVF conference on computer vision and pattern recognition [C]. Nashville: IEEE, 2021: 3173-3182.
|
[88] |
CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 8958-8966.
|
[89] |
WANG Y, SOLOMON J M. Deep closest point: Learning representations for point cloud registration [J]. Proceedings of the IEEE International Conference on Computer Vision, 2019, 2019: 3523-3532.
|
[90] |
AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: Robust & efficient point cloud registration using pointNet: IEEE/CVF conference on computer vision and pattern recognition [C]. Long Beach: IEEE, 2019: 7163-7172.
|
[91] |
SARODE V, LI X, GOFORTH H, et al. PcrNet: Point cloud registration network using pointNet encoding [J]. Computer Science, 2019: ArXiv 1908.07906.
|
[92] |
易倩, 钟浩宇, 刘龙, 等. 基于ROI-RSICP算法的车轮廓形动态检测 [J]. 中国激光,2020,47(11):154-165.
YI Qian, ZHONG Haoyu, LIU Long, et al. Dynamic inspection of profile based on ROI-RSICP algorithm [J]. Chinese Journal of Lasers,2020,47(11):154-165.
|
[93] |
ZAGANIDIS A, SUN L, DUCKETT T, et al. Integrating deep semantic segmentation into 3-D point cloud registration [J]. IEEE Robotics and Automation Letters,2018,3(4):2942-2949. doi: 10.1109/LRA.2018.2848308
|
[94] |
陈强, 岳东杰, 陈健. 基于特征空间匹配的激光雷达点云配准算法 [J]. 大地测量与地球动力学,2020,40(12):1303-1307.
CHEN Qiang, YUE Dongjie, CHEN Jian. Laser lidar point registration algorithm based on feature space matching [J]. Journal of Geodesy and Geodynamics,2020,40(12):1303-1307.
|
[95] |
李昌华, 史浩, 李智杰. 基于卷积神经网络结合改进Harris-SIFT的点云配准方法 [J]. 激光与光电子学进展,2020,57(20):238-247.
LI Changhua, SHI Hao, LI Zhijie. Point cloud registration method based on combination of convolutional neural network and improved Harris-SIFT [J]. Laser & Optoelectronics Progress,2020,57(20):238-247.
|