Citation: | YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160 |
[1] |
ZHENG X H, LIU Z Q, GUO G Q, et al. Experimental research of grinding TC4 titanium alloy using green silicon carbide wheel [J]. Key Engineering Materials,2011,487:121-125. doi: 10.4028/www.scientific.net/KEM.487.121
|
[2] |
HUANG S T, YU X L. A study of grinding forces of SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2018,94(9/10/11/12):3633-3639. doi: 10.1007/s00170-017-1115-2
|
[3] |
PAN Y, WANG Y, ZHOU P, et al. Activation functions selection for BP neural network model of ground surface roughness [J]. Journal of Intelligent Manufacturing,2020,31:1825-1836. doi: 10.1007/s10845-020-01538-5
|
[4] |
陈明, 朱明武. 声发射在磨削难加工材料中的应用 [J]. 南京理工大学学报,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001
CHEM Ming, ZHU Mingwu. Application of acoustic emission signal in grinding difficult-to-machine materials [J]. Journal of Nanjing University of Science and Technology,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001
|
[5] |
刘贵杰, 巩亚东, 王宛山. 声发射技术在磨削加工监测中的应用 [J]. 机械工程师,2001(12):4-6.
LIU Guijie, GONG Yadong, WANG Wanshan. Applications of acoustic emission technology in monitoring of grinding processes [J]. Mechanical Engineer,2001(12):4-6.
|
[6] |
DING N, ZHAO C L, LUO X C, et al. An intelligent prediction of surface roughness on precision grinding [J]. Solid State Phenomena, 2017, 261: 221-225.
|
[7] |
ARUN A, RAMESHKUMER K, UNNIKRISHNAN D, et al. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor [J]. Materials Today: Proceedings,2018,5(5):11888-11899. doi: 10.1016/j.matpr.2018.02.162
|
[8] |
LIU H, XU S H, GE X M, et al. Automatic sedimentary microfacies identification from logging curves based on deep process neural network [J]. Cluster Computing,2019,22:12451-12457. doi: 10.1007/s10586-017-1656-z
|
[9] |
HWEJU Z, ABOU-El-HOSSEIN K. Surface roughness prediction based on acoustic emission signals in high-precision diamond turning of rapidly solidified optical aluminum grade (RSA443) [J]. Key Engineering Materials, 2020, 841: 363-368.
|
[10] |
郭力, 杜厚斌, 邓喻. 硬质合金PA30高速深磨过程中声发射信号特征的变化研究 [J]. 金刚石与磨料磨具工程,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008
GUO Li, DU Houbin, DENG Yu. Characteristic changes of acoustic emission(AE) signal during high speed deep grinding of cemented carbide PA30 [J]. Diamond & Abrasives Engineering,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008
|
[11] |
PANDIYAN V, CAESARENDRA W, TJAHJOWIDODO T, et al. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm [J]. Journal of Manufacturing Processes,2018,31:199-213. doi: 10.1016/j.jmapro.2017.11.014
|
[12] |
MAHATA S, SHAKYA P, BABU N R. A robust condition monitoring methodology for grinding wheel wear identification using Hilbert Huang transform [J]. Precision Engineering,2021,70:77-91. doi: 10.1016/j.precisioneng.2021.01.009
|
[13] |
QI J, CHEN B, ZHANG D. Multi-information fusion-based belt condition monitoring in grinding process using the improved-Mahalanobis distance and convolutional neural networks [J]. Journal of Manufacturing Processes,2020,59:302-315. doi: 10.1016/j.jmapro.2020.09.061
|
[14] |
WANG N, ZHANG G, REN L, et al. Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm [J]. Journal of Manufacturing Processes,2021,66:281-292. doi: 10.1016/j.jmapro.2021.04.014
|
[15] |
LIU C W, CHEN H C, LIN S C. Acoustic emission monitoring system for hard polishing of sapphire wafer [J]. Sensors and Materials,2019,31(9):2681-2689. doi: 10.18494/SAM.2019.2369
|
[16] |
WANG R, JIANG J C, PAN Y, et al. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices [J]. Journal of Hazardous Materials,2009,166(1):155-186. doi: 10.1016/j.jhazmat.2008.11.005
|
[17] |
GAO L, LI F, HUO P D, et al. Accurate prediction of the extrusion forming bonding reliability for heterogeneous welded sheets based on GA-BP neural network [J]. The International Journal of Advanced Manufacturing Technology,2021,117:765-774. doi: 10.1007/s00170-021-07797-7
|