Citation: | XIANG Xiongbiao, ZHANG Xinna, ZHOU Kangkang, XU Xianghong. Optimization of camshaft grinding parameters based on response surface method and NSGA2[J]. Diamond & Abrasives Engineering, 2023, 43(3): 348-354. doi: 10.13394/j.cnki.jgszz.2022.0141 |
[1] |
韩文强, 何辉波, 李华英, 等. TiN涂层刀具对20CrMo钢的干切削性能的影响及磨损机理 [J]. 中南大学学报(自然科学版),2014,45(1):64-70.
HAN Wenqiang, HE Huibo, LI Huaying, et al. Effect of TiN coated tools on machinability and wear mechanism in dry turning of 20CrMo steel [J]. Journal of Central South University(Science and Technology),2014,45(1):64-70.
|
[2] |
林述温, 刘衍聪, 莫开旺. 轴承沟道磨削工艺参数对磨削变质层的影响规律 [J]. 轴承,1996(12):21-23,28,38.
LIN Shuwen, LIU Yancong, MO Kaiwang. Influence of process parameters on grinding deterioration layer in groove grinding of bearing [J]. Bearings,1996(12):21-23,28,38.
|
[3] |
刘伟, 商圆圆, 邓朝晖, 等. 基于响应曲面法的轴承钢GCr15高速外圆磨削参数优化 [J]. 中国机械工程,2019,30(23):2829-2834. doi: 10.3969/j.issn.1004-132X.2019.23.008
LIU Wei, SHANG Yuanyuan, DENG Zhaohui, et al. Parameter optimization of high speed cylindrical grinding for bearing steel GCr15 based on response surface method [J]. China Mechanical Engineering,2019,30(23):2829-2834. doi: 10.3969/j.issn.1004-132X.2019.23.008
|
[4] |
KABASAKAOGLU U, KARA F, KKLÜ U. Taguchi optimization of surface roughness in grinding of cryogenically treated AISI 5140 steel [J]. Materials Testing,2020,62(10):1041-1047. doi: 10.3139/120.111583
|
[5] |
肖军民, 谢晋. 20CrMnTi高速外圆磨削试验研究及参数优化 [J]. 机床与液压,2015,43(11):56-58,84. doi: 10.3969/j.issn.1001-3881.2015.11.016
XIAO JunMin, XIE Jin. Experimental research and parameters optimization of high-speed cylindrical grinding for 20CrMnTi [J]. Machine Tool & Hydraulics,2015,43(11):56-58,84. doi: 10.3969/j.issn.1001-3881.2015.11.016
|
[6] |
CHEN T, ZHU Y J, XI X X, et al. Process parameter optimization and surface integrity evolution in the highspeed grinding of TiAl intermetallics based on grey relational analysis method [J]. The International Journal of Advanced Manufacturing Technology,2021,117(9/10):2895-2908. doi: 10.1007/s00170-021-07882-x
|
[7] |
李云雁, 胡传荣. 试验设计与数据处理 [M]. 北京: 化学工业出版社, 2005.
LI Yunyan, HU Chuanrong. Experiment design and data processing [M]. Beijing: Chemical Industry Press, 2005.
|
[8] |
DENG Z H, ZHANG X H, LIU W, et al. A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding [J]. The International Journal of Advanced Manufacturing Technology,2009,45(9/10):859-866. doi: 10.1007/s00170-009-2029-4
|
[9] |
ZHANG P H, LI Z H, ZOU L, et al. Optimization of grinding process parameters based on BILSTM network and chaos sparrow search algorithm [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2022,236(4):1693-1701. doi: 10.1177/09544089221074832
|
[10] |
CHEN Z Y, LI X K, ZHU Z U, et al. The optimization of accuracy and efficiency for multistage precision grinding process with an improved particle swarm optimization algorithm[J]. International Journal of Advanced Robotic Systems, 2020, 17(1): 172988141989350.
|
[11] |
PHOLDEE N, PATEL V K, SAIT S M, et al. Hybrid spotted hyena-nelder-mead optimization algorithm for selection of optimal machining parameters in grinding operations [J]. Materials Testing,2021,63(3):293-298. doi: 10.1515/mt-2020-0043
|
[12] |
姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划 [J]. 中国电机工程学报,2015,35(21):5405-5411. doi: 10.13334/j.0258-8013.pcsee.2015.21.003
JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm base multi-objective planning of power grid with wind farm considering power quality [J]. Proceedings of the CSEE,2015,35(21):5405-5411. doi: 10.13334/j.0258-8013.pcsee.2015.21.003
|
[13] |
徐童. 凹面凸轮磨削加工磨削力控制方法研究 [D]. 重庆: 重庆理工大学, 2019.
XU Tong. Research on grinding force control method for concave cam grinding [D]. Chongqing: Chongqing University of Technology, 2019.
|
[14] |
刘涛, 邓朝晖, 罗程耀, 等. 基于动态磨削深度的非圆轮廓高速磨削稳定性建模与分析 [J]. 中国机械工程学报,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264
LIU Tao, DENG Zhaohui, LUO Chengyao, et al. Stability modeling and analysis of non-circular high-speed grinding with consideration of dynamic grinding depth [J]. Journal of Mechanical Engineering,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264
|
[15] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints [J]. IEEE Transactions on Evolutionary Computation,2014,18(4):577-601. doi: 10.1109/TEVC.2013.2281535
|
[16] |
李蓓智. 高速高质量磨削理论、工艺、装备与应用 [M]. 上海: 上海科学技术出版社, 2012: 60-63.
LI Beizhi. Theory, process, equipment and application of high-speed high quality grinding [M]. Shanghai: Shanghai Science and Technology Press, 2012: 60-63.
|
[1] | Prediction and Optimization of Robotic Machining Grinding Force based on Neural Network-Genetic Algorithm[J]. Diamond & Abrasives Engineering. doi: 10.13394/j.cnki.jgszz.2024.0045 |
[2] | CUI Zihan, GAO Huimin, CHEN Yan, CHENG Haidong, HAN Bing. Optimization of dry compression molding process parameters for magnetic abrasive grains based on discrete element method[J]. Diamond & Abrasives Engineering, 2024, 44(1): 57-65. doi: 10.13394/j.cnki.jgszz.2023.0075 |
[3] | GUO Anshun, ZHANG Jinsheng, ZHANG Heng, WANG Kaida, SUN Yuhu, NIU Pingping, WANG Yicai. Energy consumption modeling and parameter optimization of tower combined diamond circular saw blade[J]. Diamond & Abrasives Engineering, 2024, 44(3): 398-406. doi: 10.13394/j.cnki.jgszz.2023.0128 |
[4] | HE Wenbin, YAO Gangsheng, WANG Shuguang, WANG Liangwen, MING Wuyi, XIE Guizhong, LI Ke, LU Haixia. Optimization of hinge beam of cylinder-beam integrated cubic press based on response surface method[J]. Diamond & Abrasives Engineering, 2023, 43(4): 523-530. doi: 10.13394/j.cnki.jgszz.2022.0204 |
[5] | GAO Mengyang, CHEN Genyu, LI Wei, ZHOU Wei, LI Jie. Optimization of laser sharpening parameters for diamond grinding wheel based on CNN[J]. Diamond & Abrasives Engineering, 2022, 42(5): 602-609. doi: 10.13394/j.cnki.jgszz.2022.0018 |
[6] | BAN Xinxing, LI Yunhe, HAN Shaoxing, QIU Hui, WANG Xing, CUI Zhongming. Parameters optimization for ferrite slicing based on grey theory[J]. Diamond & Abrasives Engineering, 2022, 42(3): 332-337. doi: 10.13394/j.cnki.jgszz.2021.3001 |
[7] | WANG Sen, DONG Hai, GU Yu, WANG Ming, WANG Jiawei. Research on grinding quality and removal mechanism of polycrystalline diamond tools[J]. Diamond & Abrasives Engineering, 2022, 42(4): 467-472. doi: 10.13394/j.cnki.jgszz.2021.3002 |
[8] | CHEN Fayu, SUN Yuli, WANG Liaoyuan, ZHANG Peng, SHENG Yi, NISHIKAWA Naohiro. Optimization of process parameters for finishing the bottom surface of inner groove by magnetic grinding[J]. Diamond & Abrasives Engineering, 2022, 42(2): 216-222. doi: 10.13394/j.cnki.jgszz.2021.0122 |
[9] | BIAN Da, SONG Enmin, NI Zifeng, QIAN Shanhua, ZHAO Yongwu. Optimization of CMP processing parameters for Si based on response surface method[J]. Diamond & Abrasives Engineering, 2022, 42(6): 745-752. doi: 10.13394/j.cnki.jgszz.2022.0081 |
[10] | JI Daohang, CHEN Yan, GUO Nan, LIANG Yuhong, JI Junjie, WANG Yongqing. Optimizing process parameters of ultrasonic vibration assisted grinding CFRP based on response surface method[J]. Diamond & Abrasives Engineering, 2022, 42(5): 585-594. doi: 10.13394/j.cnki.jgszz.2022.0019 |
[11] | HUANG Shuqiang, WEI Zongze, RAO Xiaoshuang, LI Chen, ZHANG Feihu. Optimization of processing parameters during electrical discharge diamond grindingof RB-SiC ceramics based on grey relational theory[J]. Diamond & Abrasives Engineering, 2021, 41(6): 56-62. doi: 10.13394/j.cnki.jgszz.2021.6.0010 |
[12] | ZHANG Kun, TIAN Yebing, CONG Jianchen, LIU Yanhou, YAN Ning, LU Tao. Reduce grinding energy consumption by modified particle swarm optimization based on dynamic inertia weigh[J]. Diamond & Abrasives Engineering, 2021, 41(1): 71-75. doi: 10.13394/j.cnki.jgszz.2021.1.0012 |
[13] | QIU Luyi, WANG Qiuyan, BAI Shuowei, JU Junwei, LIN Runze. Optimization of grinding process parameters of diamond thin circular saw blade substrate[J]. Diamond & Abrasives Engineering, 2021, 41(5): 84-88. doi: 10.13394/j.cnki.jgszz.2021.5.0014 |
[14] | LIU Haixu, WU Qingdong, CAO Xiaojun, QI Wanting, SU Jianxiu. Prediction and optimization of process parameters in chemical mechanical polishing for 304 stainless steel based on response surface methodology[J]. Diamond & Abrasives Engineering, 2021, 41(2): 89-95. doi: 10.13394/j.cnki.jgszz.2021.2.0015 |
[15] | WANG Zhankui, YANG Yakun, PANG Minghua, MA Lijie, LIANG Mingchao, LI Yongfeng, SU Jianxiu. Optimization of process parameters for lapping quartz glass with fixed abrasive[J]. Diamond & Abrasives Engineering, 2020, 40(5): 90-95. doi: 10.13394/j.cnki.jgszz.2020.5.0016 |
[16] | DU Yuchao, LIANG Zhiqiang, CHEN Jianjun, LI Yu, MA Dan, CAO Yuxuan, LI Shidi, WANG Xibin. Optimization of edge-grinding parameters of polycrystalline diamond micro ball-end mill[J]. Diamond & Abrasives Engineering, 2020, 40(5): 35-41. doi: 10.13394/j.cnki.jgszz.2020.5.0006 |
[17] | CUI Qing′an, DUAN Huanjiao, ZHANG Di, QIAO Shuai, DONG Feng. Optimization of blade length control based on least squares support vector regression[J]. Diamond & Abrasives Engineering, 2020, 40(3): 57-61. doi: 10.13394/j.cnki.jgszz.2020.3.0009 |
[18] | LUO Delong, DENG Zhaohui, LIU Tao, SHE Shuailong, LUO Chengyao, PENG Keli. High-speed grinding stability determination of camshaft based on Simulink simulation[J]. Diamond & Abrasives Engineering, 2019, 39(4): 56-61. doi: 10.13394/j.cnki.jgszz.2019.4.0009 |
[19] | GUO Zhihao, XIE Lijing, XIE Zhiyong, LIANG Guoxiang. Optimization of cutting parameters in crankshaft inner milling based on finite element simulation[J]. Diamond & Abrasives Engineering, 2019, 39(6): 88-91. doi: 10.13394/j.cnki.jgszz.2019.6.0015 |
[20] | ZHANG Bainian, ZHANG Jinsheng, JU Junwei, CHEN Xiaotao. Stress analysis and process parameters optimization of circular saw blade during quenching process[J]. Diamond & Abrasives Engineering, 2018, 38(3): 36-41. doi: 10.13394/j.cnki.jgszz.2018.3.0008 |
1. | 丁明阳,赵锦国,周康康,徐刚强,李孝禄,朱彦康,陈源,梁明轩. 基于响应曲面法和粒子群优化算法的凸轮磨削工艺参数优化. 内燃机工程. 2025(01): 80-90 . ![]() |