Citation: | WANG Jianyu, HUANG Guoqin. Review on manufacturing diamond abrasive tools by additive manufacturing technology[J]. Diamond & Abrasives Engineering, 2022, 42(3): 307-316. doi: 10.13394/j.cnki.jgszz.2022.0007 |
[1] |
朱振东, 刘豪, 张甜, 等. 金刚石表面镀覆技术与应用的研究进展 [J]. 超硬材料工程,2021,33(3):28-32. doi: 10.3969/j.issn.1673-1433.2021.03.008
ZHU Zhendong, LIU Hao, ZHANG Tian, et al. Research progress of plating technology on the diamond surface and its application [J]. Superhard Material Engineering,2021,33(3):28-32. doi: 10.3969/j.issn.1673-1433.2021.03.008
|
[2] |
马成新, 史小华. 浅谈金刚石工具的现状与发展趋势 [J]. 超硬材料工程,2015,27(5):45-48.
MA Chengxin, SHI Xiaohua. A discussion on the current status and development trend of diamond tools [J]. Superhard Material Engineering,2015,27(5):45-48.
|
[3] |
彭锐涛, 张珊, 唐新姿, 等. 加压内冷却砂轮的研制及磨削性能研究 [J]. 机械工程学报,2017,53(19):187-194. doi: 10.3901/JME.2017.19.187
PENG Ruitao, ZHANG Shan, TANG Xinzi, et al. Development and grinding performance of a pressurized internal cooling slotted grinding wheel [J]. Journal of Mechanical Engineering,2017,53(19):187-194. doi: 10.3901/JME.2017.19.187
|
[4] |
SHI C, LI X, CHEN Z. Design and experimental study of a micro-groove grinding wheel with spray cooling effect [J]. Chinese Journal of Aeronautics,2014,27(2):407-412. doi: 10.1016/j.cja.2013.07.013
|
[5] |
张绍和, 唐健, 周侯, 等. 3D打印技术在金刚石工具制造中的应用探讨 [J]. 金刚石与磨料磨具工程,2018,38(2):51-56.
ZHANG Shaohe, TANG Jian, ZHOU Hou, et al. Three-dimensional printing in the application of diamond tools manufacturing [J]. Diamond & Abrasives Engineering,2018,38(2):51-56.
|
[6] |
李文霞, 张子煜. 钎焊金刚石工具的发展现状及改进研究 [J]. 热加工工艺,2021,50(17):12-17.
LI Wenxia, ZHANG Ziyu. Development status and improvement research of brazed diamond tools [J]. Hot Working Technology,2021,50(17):12-17.
|
[7] |
HUANG G, WANG Y, ZHANG M, et al. Brazing diamond grits onto AA7075 aluminium alloy substrate with Ag–Cu–Ti filler alloy by laser heating [J]. Chinese Journal of Aeronautics,2021,34(6):67-78. doi: 10.1016/j.cja.2020.07.005
|
[8] |
吴颖. 电镀金刚石工具的应用现状及改进研究 [J]. 热加工工艺,2015,44(18):18-21.
WU Ying. Application status and improved research of electroplated diamond tools [J]. Hot Working Technology,2015,44(18):18-21.
|
[9] |
王琳, 黄志伟, 李云东, 等. 电镀金刚石工具新工艺 [J]. 电镀与环保,2015,25(5):7-8. doi: 10.3969/j.issn.1000-4742.2015.05.003
WANG Lin, HUANG Zhiwei, LI Yundong, et al. New technology of preparation of diamond tool by electroplating [J]. Electroplating & Pollution,2015,25(5):7-8. doi: 10.3969/j.issn.1000-4742.2015.05.003
|
[10] |
徐强, 刘一波, 杨志威. 热压烧结工艺参数对金刚石工具胎体力学性能的影响 [J]. 超硬材料工程,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002
XU Qiang, LIU Yibo, YANG Zhiwei. Influence of hot press sintering technical parameters on mechanical properties of diamond tools matrix [J]. Superhard Material Engineering,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002
|
[11] |
冯晓杰. 真空烧结法制备多孔金属结合剂金刚石砂轮 [D]. 南京: 南京航空航天大学, 2008.
FENG Xiaojie. Fabrication of porous metal-bonded diamond grinding wheels using vacuum sintering [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
|
[12] |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化,2013,42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001
LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology [J]. Machine Building & Automation,2013,42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001
|
[13] |
张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术 [J]. 材料工程,2016,44(2):122-128. doi: 10.11868/j.issn.1001-4381.2016.02.019
ZHANG Xuejun, TANG Siyi, ZHAO Hengyue, et al. Research status and key technologies of 3D printing [J]. Journal of Materials Engineering,2016,44(2):122-128. doi: 10.11868/j.issn.1001-4381.2016.02.019
|
[14] |
卢秉恒. 我国增材制造技术的应用方向及未来发展趋势 [J]. 表面工程与再制造,2019,19(1):11-13. doi: 10.3969/j.issn.1672-3732.2019.01.002
LU Bingheng. Application direction and future development trend of additive manufacturing technology in my country [J]. Surface Engineering & Manufacturing,2019,19(1):11-13. doi: 10.3969/j.issn.1672-3732.2019.01.002
|
[15] |
卢秉恒. 增材制造技术−现状与未来 [J]. 中国机械工程,2020,31(1):19-23.
LU Bingheng. Additive manufacturing—current situation and future [J]. China Mechanical Engineering,2020,31(1):19-23.
|
[16] |
DEJA M, ZIELIŃSKI D, KADIR A Z A, et al. Applications of additively manufactured tools in abrasive machining—A literature review [J]. Materials,2021,14(5):1318. doi: 10.3390/ma14051318
|
[17] |
KING W E, ANDERSON A T, FERENCZ R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges [J]. Applied Physics Reviews,2015,2(4):41304. doi: 10.1063/1.4937809
|
[18] |
胡师柿. 3D打印技术的发展情况综述 [J]. 造纸装备及材料,2021,50(7):76-77. doi: 10.3969/j.issn.1672-3066.2021.07.035
HU Shishi. A review of the development of 3D printing technology [J]. Papermaking Equipment & Materials,2021,50(7):76-77. doi: 10.3969/j.issn.1672-3066.2021.07.035
|
[19] |
张衡, 杨可. 增材制造的现状与应用综述 [J]. 包装工程,2021,42(16):9-15.
ZHANG Heng, YANG Ke. Overview of the present situation and application of additive manufacturing [J]. Packaging Engineering,2021,42(16):9-15.
|
[20] |
赵延国, 柳传鑫, 许淙博, 等. 3D打印技术及设备发展现状 [J]. 机械研究与应用,2021,34(3):224-227.
ZHAO Yanguo, LIU Chuanxin, XU Congbo, et al. Development status of 3D printing technology and equipment [J]. Mechanical Research & Application,2021,34(3):224-227.
|
[21] |
ZAKERI S, VIPPOLA M, LEVANEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography [J]. Additive Manufacturing,2020,35:101177.
|
[22] |
孔祥忠. SLA光固化3D打印成型技术研究 [J]. 中国设备工程,2021(11):207-208. doi: 10.3969/j.issn.1671-0711.2021.11.128
KONG Xiangzhong. SLA light curing 3D printing technology research [J]. China Plant Engineering,2021(11):207-208. doi: 10.3969/j.issn.1671-0711.2021.11.128
|
[23] |
余刘洋, 李丹杰, 夏培斌, 等. 陶瓷光固化3D打印技术研究进展及应用 [J]. 橡塑技术与装备,2022,48(1):5-9.
YU Liuyang, LI Danjie, XIA Peibin, et al. Research progress and application of ceramic light-curing 3D printing technology [J]. China Rubber/Plastics Technology and Equipment,2022,48(1):5-9.
|
[24] |
CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
|
[25] |
宫玉玺, 王庆顺, 朱丽娟,等. 选择性激光烧结成形设备及原材料的研究现状 [J]. 铸造,2017,66(3):258-262.
GONG Yuxi, WANG Qingshun, ZHU Lijuan, et al. Review on the progress of forming equipment and materials for SLS [J]. Foundry,2017,66(3):258-262.
|
[26] |
SCHNIDT M, POHLE D, RECHTENWALD T. Selective laser sintering of peek [J]. Cirp Annals,2007,56(1):205-208. doi: 10.1016/j.cirp.2007.05.097
|
[27] |
刘锦辉. 添加聚合物粉末的316粉末SLS成型与后处理的研究 [D]. 阜新: 辽宁工程技术大学, 2002.
LIU Jinhui. Study on the SLS molding and post-process of 316 powder added by polymer powder [D]. Fuxin: Liaoning Technical University, 2002.
|
[28] |
SIMCHI A, POHL H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder [J]. Materials Science and Engineering: A,2003,359(1/2):119-128. doi: 10.1016/S0921-5093(03)00341-1
|
[29] |
YAN C, SHI Y, YANG J, et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing [J]. Journal of Materials Processing Technology,2009,209(17):5785-5792. doi: 10.1016/j.jmatprotec.2009.06.010
|
[30] |
WU J, LI M, LIU S, et al. Selective laser sintering of porous Al2O3-based ceramics using both Al2O3 and SiO2 poly-hollow microspheres as raw materials [J]. Ceramics International,2021,47(11):15313-15318. doi: 10.1016/j.ceramint.2021.02.096
|
[31] |
BEAN G E, WITKIN D B, MCLOUTH T D, et al. Process gas influence on microstructure and mechanical behavior of Inconel 718 fabricated via selective laser melting [J]. Progress in Additive Manufacturing,2020,5(4):405-417. doi: 10.1007/s40964-020-00133-7
|
[32] |
YADTOITSEV I, SHISHKOVSKY I, BERTRAND P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting [J]. Applied Surface Science,2009,255(10):5523-5527. doi: 10.1016/j.apsusc.2008.07.154
|
[33] |
戴冬华, 顾冬冬, 李雅莉, 等. 选区激光熔化W–Cu复合体系熔池熔体运动行为的数值模拟 [J]. 中国激光,2013,40(11):82-90.
DAI Donghua, GU Dongdong, LI Yali, et al. Numerical simulation of metallurgical behavior of melt pool during selective laser melting of W–Cu composite powder system [J]. Chinese Journal of Lasers,2013,40(11):82-90.
|
[34] |
田中武司, 蒋修治. 光造型磨具的制作及其性能 [J]. 磨料磨具通讯,2004(1):8-10.
TAKESHI Tanaka, JIANG Xiuzhi. Manufacture and properties of light modeling abrasives [J]. Abrasives Newsletter,2004(1):8-10.
|
[35] |
HUANG Q, GUO L, MARINESCU I D. Research on the properties of resin bond wheel cured by ultraviolet light [J]. Procedia Manufacturing,2016,5:259-269. doi: 10.1016/j.promfg.2016.08.023
|
[36] |
杨温鑫, 孟晓燕, 邓欣, 等. 一种基于光固化3D打印成型的金刚石复合材料的制备方法及应用: CN113442430A [P]. 2021-09-28.
YANG Wenxin, MENG Xiaoyan, DENG Xin, et al. A preparation method and application of a diamond composite material based on photocuring 3D printing: CN113442430A [P]. 2021-09-28.
|
[37] |
GUO L, ZHANG X, CHEN S, et al. An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools [J]. Materials,2019,12(1):125. doi: 10.3390/ma12010125
|
[38] |
GUO L, ZHANG X, LEE C, et al. An experimental study on the abrasive machining process of electronic substrate material with a novel ultraviolet-curable resin bond diamond lapping plate [J]. IEEE Access,2019,7:64375-64385. doi: 10.1109/ACCESS.2019.2917304
|
[39] |
QIU Y, HUANG H. Research on the fabrication and grinding performance of 3-dimensional controllable abrasive arrangement wheels [J]. The International Journal of Advanced Manufacturing Technology,2019,104(5/6/7/8):1839-1853. doi: 10.1007/s00170-019-03900-1
|
[40] |
邱燕飞. 金刚石磨粒三维可控排布树脂磨具的构造与制备 [D]. 厦门: 华侨大学, 2019.
QIU Yanfei. Research on the design and fabrication of resin grinding wheels with 3-dimentional controllable diamond abrasive arrangement [D]. Xiamen: Huaqiao University, 2019.
|
[41] |
李双江, 李基, 肖横洋. 选择性激光烧结(SLS)专利技术综述 [J]. 中国科技信息,2018(11):46-47. doi: 10.3969/j.issn.1001-8972.2018.11.014
LI Shuangjiang, LI Ji, XIAO Hengyang. Overview of selective laser sintering (SLS) patent technology [J]. China Science and Technology Information,2018(11):46-47. doi: 10.3969/j.issn.1001-8972.2018.11.014
|
[42] |
YANG Z, ZHANG M, ZHANG Z, et al. A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology [J]. Materials & Design,2016,104:292-297.
|
[43] |
WU J, ZHANG S, QU F, et al. Matrix material for a new 3D-printed diamond-impregnated bit with grid-shaped matrix [J]. International Journal of Refractory Metals and Hard Materials,2019,82:199-207. doi: 10.1016/j.ijrmhm.2019.04.017
|
[44] |
WU J, ZHANG S, LIU L, et al. Rock breaking characteristics of a 3D printing grid-matrix impregnated diamond bit [J]. International Journal of Refractory Metals and Hard Materials,2020,89:105212. doi: 10.1016/j.ijrmhm.2020.105212
|
[45] |
DU Z, ZHANG F, XU Q, et al. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes [J]. Ceramics International,2019,45(16):20873-20881. doi: 10.1016/j.ceramint.2019.07.076
|
[46] |
邹文俊, 陈功武, 宋城, 等. 超硬磨具用金属结合剂国内外研究进展 [J]. 金刚石与磨料磨具工程,2014,34(4):83-88.
ZOU Wenjun, CHEN Gongwu, SONG Cheng, et al. Review of metal bond material used in superhard abrasive tools [J]. Diamond & Abrasives Engineering,2014,34(4):83-88.
|
[47] |
孙浩斌, 张华, 姚海滨, 等. 基于激光增材制造高熵合金金刚石复合材料的制备方法: CN110202145A [P]. 2019-09-06.
SUN Haobin, ZHANG Hua, YAO Haibin, et al. Preparation method of high-entropy alloy diamond composite based on laser additive manufacturing: CN110202145A [P]. 2019-09-06.
|
[48] |
KONSTANTY J. Production parameters and materials selection of powder metallurgy diamond tools [J]. Powder Metallurgy,2006,49(4):299-306. doi: 10.1179/174329006X113508
|
[49] |
吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展 [J]. 金刚石与磨料磨具工程,2019,39(2):37-45.
WU Yanping, YAN Qingzhi. Research progress of metal bond diamond tools [J]. Diamond & Abrasives Engineering,2019,39(2):37-45.
|
[50] |
MA Y, JI G, LI X P, et al. On the study of tailorable interface structure in a diamond/Al12Si composite processed by selective laser melting [J]. Materialia,2019,5:100242. doi: 10.1016/j.mtla.2019.100242
|
[51] |
GAN J, GAO H, WEN S, et al. Simulation, forming process and mechanical property of Cu–Sn–Ti/diamond composites fabricated by selective laser melting [J]. International Journal of Refractory Metals and Hard Materials,2020,87:105144. doi: 10.1016/j.ijrmhm.2019.105144
|
[52] |
SPIERINGS A B, LEINENBACH C, KENEL C, et al. Processing of metal-diamond-composites using selective laser melting [J]. Rapid Prototyping Journal,2015,21(2):130-136. doi: 10.1108/RPJ-11-2014-0156
|
[53] |
LI X, WANG C, TIAN C, et al. Digital design and performance evaluation of porous metal-bonded grinding wheels based on minimal surface and 3D printing [J]. Materials & Design,2021,203:109556.
|
[54] |
TIAN C, LI X, ZHANG S, et al. Porous structure design and fabrication of metal-bonded diamond grinding wheel based on selective laser melting (SLM) [J]. The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):1451-1462. doi: 10.1007/s00170-018-2734-y
|
[55] |
TIAN C, LI X, ZHANG S, et al. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM) [J]. Materials & Design,2018,156:52-61.
|
[56] |
TIAN C, LI X, LI H, et al. Study on process and manufacturability of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM) [J]. Journal of Physics: Conference Series, 2019,1303(1):12144.
|
[57] |
TIAN C, LI X, LI H, et al. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM) [J]. Materials Science & Engineering,2018,743:697-706.
|