Citation: | HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, HUANG Han. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond & Abrasives Engineering, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009 |
[1] |
HUANG H, LI X, MU D, et al. Science and art of ductile grinding of brittle solids [J]. International Journal of Machine Tools and Manufacture,2020,161:103675. doi: 10.1016/j.ijmachtools.2020.103675
|
[2] |
LAWN B R, BORRERO-LOPEZ O, HUANG H, et al. Micromechanics of machining and wear in hard and brittle materials [J]. Journal of the American Ceramic Society,2020,104(1):5-22. doi: 10.1111/jace.17502
|
[3] |
WU Y, MU D, HUANG H. Deformation and removal of semiconductor and laser single crystals at extremely small scales [J]. International Journal of Extreme Manufacturing,2020,2(2):12006. doi: 10.1088/2631-7990/ab7a2a
|
[4] |
SREEJITH P S, NGOI B K A. Material removal mechanisms in precision machining of new materials [J]. International Journal of Machine Tools and Manufacture,2001,41(12):1831-1843. doi: 10.1016/S0890-6955(01)00014-1
|
[5] |
PEI Z J, FISHER G R, LIU J. Grinding of silicon wafers: A review from historical perspectives [J]. International Journal of Machine Tools and Manufacture,2008,48(12/13):1297-1307. doi: 10.1016/j.ijmachtools.2008.05.009
|
[6] |
FENG P, WANG J, ZHANG J, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review [J]. Ceramics International,2017,44:1227-1239. doi: 10.1016/j.ceramint.2017.10.050
|
[7] |
YAN J, ZHANG Z, KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide [J]. International Journal of Machine Tools and Manufacture,2009,49(5):366-374. doi: 10.1016/j.ijmachtools.2008.12.007
|
[8] |
MUKAIDA M, YAN J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo [J]. International Journal of Machine Tools and Manufacture,2017,115:2-14. doi: 10.1016/j.ijmachtools.2016.11.004
|
[9] |
LI C, LI X, WU Y, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals [J]. International Journal of Machine Tools and Manufacture,2019,143:23-37. doi: 10.1016/j.ijmachtools.2019.05.003
|
[10] |
LI C, WU Y, LI X, et al. Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals [J]. Journal of Materials Processing Technology,2020,279:116577. doi: 10.1016/j.jmatprotec.2019.116577
|
[11] |
ZHANG C, RENTSCH R, BRINKSMEIER E. Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: A brief review and outlook [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):881-890. doi: 10.1016/j.ijmachtools.2004.10.018
|
[12] |
LAWN B R. Partial cone crack formation in a brittle material loaded with a sliding spherical indenter [J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1967,299(1458):307-316. doi: 10.1098/rspa.1967.0138
|
[13] |
LAWN B R, COOK R F. Probing material properties with sharp indenters: A retrospective [J]. Journal of Materials Science,2012,47:1-22. doi: 10.1007/s10853-011-5865-1
|
[14] |
LAWN B, WILSHAW R. Indentation fracture: Principles and applications [J]. Journal of Materials Science,1975,10:1049-1081. doi: 10.1007/BF00823224
|
[15] |
LAWN B R, PADTURE N P, CAIT H, et al. Making ceramics “ductile” [J]. Science,1994,263(5150):1114-1116. doi: 10.1126/science.263.5150.1114
|
[16] |
OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. Journal of Materials Research,2004,19(1):3-20. doi: 10.1557/jmr.2004.19.1.3
|
[17] |
JUNG Y G, PAJARES A, BANERGEE R, et al. Strength of silicon, sapphire and glass in the subthreshold flaw region [J]. Acta Materialia,2004,52(12):3459-3466. doi: 10.1016/j.actamat.2004.03.043
|
[18] |
XU H H, JAHANMIR S. Microfracture and material removal in scratching of alumina [J]. Journal of Materials Science,1995,30(9):2235-2247. doi: 10.1007/BF01184566
|
[19] |
BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: A new technology for machining brittle materials [J]. Journal of Engineering for Industry,1991,113(2):184-189. doi: 10.1115/1.2899676
|
[20] |
ZHONG Z W. Ductile or partial ductile mode machining of brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2003,21:579-585. doi: 10.1007/s00170-002-1364-5
|
[21] |
NEO W K, KUMAR A S, RAHMAN M. A review on the current research trends in ductile regime machining [J]. The International Journal of Advanced Manufacturing Technology,2012,63:465-480. doi: 10.1007/s00170-012-3949-y
|
[22] |
WU H, MELKOTE S N. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: Application to wire sawing of silicon wafers [J]. Journal of Engineering Materials and Technology,2012,134(4):041011. doi: 10.1115/1.4006177
|
[23] |
BEAUCAMP A, SIMON P, CHARLTON P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics [J]. International Journal of Machine Tools and Manufacture,2017,115:29-37. doi: 10.1016/j.ijmachtools.2016.11.006
|
[24] |
NAKASUJI T, KODERA S, HARA S, et al. Diamond turning of brittle materials for optical components [J]. CIRP Annals-Manufacturing Technology,1990,39:89-92. doi: 10.1016/S0007-8506(07)61009-9
|
[25] |
KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (A review) [J]. Journal of Superhard Materials,2013,35:259-276. doi: 10.3103/S1063457613050018
|
[26] |
HUANG H, LAWN B R, COOK R F, et al. Critique of materials‐based models of ductile machining in brittle solids [J]. Journal of the American Ceramic Society,2020,103:6096-6100. doi: 10.1111/jace.17344
|
[27] |
MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives [M]. Norwalk: Industrial Press Inc. , 2008.
|
[28] |
HUANG H, LIU Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding [J]. International Journal of Machine Tools and Manufacture,2003,43:811-823. doi: 10.1016/S0890-6955(03)00050-6
|
[29] |
LI C, ZHANG F, MENG B, et al. Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing [J]. Materials & Design,2017,125:180-188. doi: 10.1016/j.matdes.2017.04.018
|
[30] |
LI C, ZHANG F, PIAO Y. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal [J]. Ceramics International,2019,45(12):15015-15024. doi: 10.1016/j.ceramint.2019.04.238
|
[31] |
KOSMAC T, OBLAK C, JEVNIKAR P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic [J]. Dental Materials,1999,15(6):426-433. doi: 10.1016/S0109-5641(99)00070-6
|
[32] |
WU H, ROBERTS S G, DERBY B. Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics [J]. Acta Materialia,2001,49(3):507-517. doi: 10.1016/S1359-6454(00)00333-5
|
[33] |
COLILLA M, MANZANO M, VALLET-REGI M. Recent advances in ceramic implants as drug delivery systems for biomedical applications [J]. International Journal of Nanomedicine,2008,3(4):403-414. doi: 10.2147/IJN.S3548
|
[34] |
YIN L, HUANG H. Ceramic response to high speed grinding [J]. Machining Science and Technology,2004,8(1):21-37. doi: 10.1081/MST-120034240
|
[35] |
BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures [J]. Materials Science and Engineering: A,2010,527(6):1314-1338. doi: 10.1016/j.msea.2009.09.064
|
[36] |
XU H H, WEI L, JAHANMIR S. Influence of grain size on the grinding response of alumina [J]. Journal of the American Ceramic Society,1996,79:1307-1313. doi: 10.1111/j.1151-2916.1996.tb08589.x
|
[37] |
XU H H, PADTURE N P, JAHANMIR S. Effect of microstructure on material‐removal mechanisms and damage tolerance in abrasive machining of silicon carbide [J]. Journal of the American Ceramic Society,1995,78(9):2443-2448. doi: 10.1111/j.1151-2916.1995.tb08683.x
|
[38] |
XU H H K, JAHANMIR S, IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina [J]. Machining Science and Technology,1997,1(1):49-66. doi: 10.1080/10940349708945637
|
[39] |
XU H H, WEI L, JAHANMIR S. Grinding force and microcrack density in abrasive machining of silicon nitride [J]. Journal of Materials Research,1995,10(12):3204-3209. doi: 10.1557/JMR.1995.3204
|
[40] |
CAI L, GUO X, GAO S, et al. Material removal mechanism and deformation characteristics of AlN ceramics under nanoscratching [J]. Ceramics International,2019,45(16):20545-20554. doi: 10.1016/j.ceramint.2019.07.034
|
[41] |
YIN L, HUANG H, RAMESH K, et al. High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):897-907. doi: 10.1016/j.ijmachtools.2004.10.016
|
[42] |
COOK R F, PHARR G M. Direct observation and analysis of indentation cracking in glasses and ceramics [J]. Journal of the American Ceramic Society,1990,73(4):787-817. doi: 10.1111/j.1151-2916.1990.tb05119.x
|
[43] |
BURGHARD Z, ZIMMERMANN A, RODEL J, et al. Crack opening profiles of indentation cracks in normal and anomalous glasses [J]. Acta Materialia,2004,52(2):293-297. doi: 10.1016/j.actamat.2003.09.014
|
[44] |
GU W, YAO Z, LIANG X. Material removal of optical glass BK7 during single and double scratch tests [J]. Wear,2011,270(3):241-246. doi: DOI:10.1016/j.wear.2010.10.064
|
[45] |
LEE K, MARIMUTHU K P, KIM C L, et al. Scratch-tip-size effect and change of friction coefficient in nano/micro scratch tests using XFEM [J]. Tribology International,2018,120:398-410. doi: 10.1016/j.triboint.2018.01.003
|
[46] |
LI X, HUANG S, WU Y, et al. Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates [J]. Precision Engineering,2019,60:291-298. doi: 10.1016/j.precisioneng.2019.08.016
|
[47] |
WANG Y, LI X, WU Y, et al. The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching [J]. International Journal of Mechanical Sciences,2021,204:106562. doi: 10.1016/j.ijmecsci.2021.106562
|
[48] |
GAO S, WU Y, KANG R, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing,2018,79:165-170. doi: 10.1016/j.mssp.2017.12.017
|
[49] |
ZHANG Z, WU Y, HUANG H. New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding [J]. Scripta Materialia,2010,63(6):621-624. doi: 10.1016/j.scriptamat.2010.05.043
|
[50] |
IRWAN R, HUANG H, ZHENG H Y, et al. Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals [J]. Materials Science and Engineering: A,2013,559:480-485. doi: 10.1016/j.msea.2012.08.129
|
[51] |
MALKIN S, HWANG T W. Grinding mechanisms for ceramics [J]. CIRP Annals-Manufacturing Technology,1996,45(2):569-580. doi: 10.1016/S0007-8506(07)60511-3
|
[52] |
ZHANG B, HOWES T D. Material-removal mechanisms in grinding ceramics [J]. CIRP Annals Manufacturing Technology,1994,43(1):305-308. doi: 10.1016/S0007-8506(07)62219-7
|
[53] |
ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics [J]. International Journal of Machine Tools and Manufacture,2015,90:16-28. doi: 10.1016/j.ijmachtools.2014.12.002
|
[54] |
ZARUDI I, ZHANG L. On the limit of surface integrity of alumina by ductile-mode grinding [J]. Journal of Engineering Materials and Technology,2000,122(1):129-134. doi: 10.1115/1.482776
|
[55] |
COOK R F. Fracture mechanics of sharp scratch strength of polycrystalline alumina [J]. Journal of the American Ceramic Society,2017,100(3):1146-1160. doi: 10.1111/jace.14634
|
[56] |
YANG Z, ZHU L, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding [J]. Ceramics International,2019,45(7):8873-8889. doi: 10.1016/j.ceramint.2019.01.216
|
[57] |
REKOW E, SILVA N, COELHO P, et al. Performance of dental ceramics: Challenges for improvements [J]. Journal of Dental Research,2011,90(8):937-952. doi: 10.1177/0022034510391795
|
[58] |
YIN L, JAHANMIR S, IVES L K. Abrasive machining of porcelain and zirconia with a dental handpiece [J]. Wear,2003,255:975-989. doi: 10.1016/S0043-1648(03)00195-9
|
[59] |
SHIH A J, SCATTERGOOD R O, CURRY A C, et al. Cost-effective grinding of zirconia using the dense vitreous bond silicon carbide wheel [J]. Journal of Manufacturing Science & Engineering,2003,125(2):297-303. doi: DOI:10.1115/1.1559167
|
[60] |
ANAND P S P, ARUNACHALAM N, VIJAYARAGHAVAN L. Investigation on grindability of medical implant material using a silicon carbide wheel with different cooling conditions [J]. Procedia Manufacturing,2017,10:417-428. doi: 10.1016/j.promfg.2017.07.016
|
[61] |
LEE S K, TANDON R, READEY M J, et al. Scratch damage in zirconia ceramics [J]. Journal of the American Ceramic Society,2000,83(6):1428-1432. doi: 10.1111/j.1151-2916.2000.tb01406.x
|
[62] |
DAI J, SU H, YU T, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain [J]. Precision Engineering,2018,51:271-279. doi: 10.1016/j.precisioneng.2017.08.019
|
[63] |
LI Z, ZHANG F, LUO X. Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding [J]. Applied Surface Science,2018,448:341-350. doi: 10.1016/j.apsusc.2018.04.038
|
[64] |
BORRERO-LOPEZ O, ORTIZ A L, GUIBERTEAU F, et al. Improved sliding‐wear resistance in in situ‐toughened silicon carbide [J]. Journal of the American Ceramic Society,2005,88(12):3531-3534. doi: 10.1111/j.1551-2916.2005.00628.x
|
[65] |
PADTURE N P, EVANS C J, XU H H, et al. Enhanced machinability of silicon carbide via microstructural design [J]. Journal of the American Ceramic Society,1995,78(1):215-217. doi: 10.1111/j.1151-2916.1995.tb08386.x
|
[66] |
YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture,2004,44(6):607-615. doi: 10.1016/j.ijmachtools.2003.12.006
|
[67] |
AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding [J]. International Journal of Machine Tools and Manufacture,2008,48(6):698-710. doi: 10.1016/j.ijmachtools.2007.10.013
|
[68] |
LEE S K, LEE K S, LAWN B R, et al. Effect of starting powder on damage resistance of silicon nitrides [J]. Journal of the American Ceramic Society,1998,81(8):2061-2070. doi: 10.1111/j.1151-2916.1998.tb02588.x
|
[69] |
HUANG H, YIN L, ZHOU L. High speed grinding of silicon nitride with resin bond diamond wheels [J]. Journal of Materials Processing Technology,2003,141:329-336. doi: 10.1016/S0924-0136(03)00284-X
|
[70] |
AZARHOUSHANG B, SOLTANI B, ZAHEDI A. Laser-assisted grinding of silicon nitride by picosecond laser [J]. The International Journal of Advanced Manufacturing Technology,2017,93(3/4):2517-2529. doi: 10.1007/s00170-017-0440-9
|
[71] |
HUANG S, LI X, YU B, et al. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping [J]. Journal of Materials Processing Technology,2020,277:116444. doi: 10.1016/j.jmatprotec.2019.116444
|
[72] |
WU Y Q, HUANG H, ZOU J, et al. Nanoscratch-induced phase transformation of monocrystalline Si [J]. Scripta Materialia,2010,63(8):847-850. doi: 10.1016/j.scriptamat.2010.06.034
|
[73] |
MYLVAGANAM K, ZHANG L C. Nanotwinning in monocrystalline silicon upon nanoscratching [J]. Scripta Materialia,2011,65(3):214-216. doi: 10.1016/j.scriptamat.2011.04.012
|
[74] |
LIU H, XIE W, SUN Y, et al. Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon [J]. The International Journal of Advanced Manufacturing Technology,2018,95:317-326. doi: 10.1007/s00170-017-1108-1
|
[75] |
LI C, PIAO Y, MENG B, et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture,2022,172:103827. doi: 10.1016/j.ijmachtools.2021.103827
|
[76] |
WANG J, GUO B, ZHAO Q, et al. Dependence of material removal on crystal orientation of sapphire under cross scratching [J]. Journal of the European Ceramic Society,2017,37(6):2465-2472. doi: 10.1016/j.jeurceramsoc.2017.01.032
|
[77] |
DEMIR E, MERCAN C. A physics-based single crystal plasticity model for crystal orientation and length scale dependence of machining response [J]. International Journal of Machine Tools and Manufacture,2018,134:25-41. doi: 10.1016/j.ijmachtools.2018.06.004
|
[78] |
LUO Q, LU J, XU X. Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools [J]. Tribology International,2016,104:191-203. doi: 10.1016/j.triboint.2016.09.003
|
[79] |
HERMAN D, KRZOS J. Influence of vitrified bond structure on radial wear of CBN grinding wheels [J]. Journal of Materials Processing Technology,2009,209:5377-5386. doi: 10.1016/j.jmatprotec.2009.03.013
|
[80] |
ZHOU Y, ATWOOD M, GOLINI D, et al. Wear and self-sharpening of vitrified bond diamond wheels during sapphire grinding [J]. Wear,1998,219(1):42-45. doi: 10.1016/S0043-1648(98)00230-0
|
[81] |
HUANG H, CHEN W, YIN L, et al. Micro/meso ultra precision grinding of fibre optic connectors [J]. Precision Engineering,2004,28(1):95-105. doi: 10.1016/j.precisioneng.2003.08.001
|
[82] |
AXINTE D, BUTLER-SMITH P, AKGUN C, et al. On the influence of single grit micro-geometry on grinding behavior of ductile and brittle materials [J]. International Journal of Machine Tools and Manufacture,2013,74:12-18. doi: 10.1016/j.ijmachtools.2013.06.002
|