CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
ZOU Qin, ZHANG Chengxiang, LI Yanguo, LI Kenan. Research present situation of machining deformation of ultra-thin dicing blades[J]. Diamond & Abrasives Engineering, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102
Citation: ZOU Qin, ZHANG Chengxiang, LI Yanguo, LI Kenan. Research present situation of machining deformation of ultra-thin dicing blades[J]. Diamond & Abrasives Engineering, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102

Research present situation of machining deformation of ultra-thin dicing blades

doi: 10.13394/j.cnki.jgszz.2021.0102
More Information
  • Received Date: 2021-09-02
  • Accepted Date: 2021-11-15
  • Rev Recd Date: 2021-09-25
  • The ultra-thin dicing blades are prone to radial machining deformation during work. The research status of machining deformation of ultra-thin dicing blades is summarized from theoretical analysis of stress and deformation, finite element simulation analysis and experimental research. In addition, the existing problems are analyzed, and the related research results of grinding wheels and circular saw blades with similar structures are introduced. The results show that: the research on the influence of the cutting blade rotation speed on the deformation of the ultra-thin dicing blade is relatively systematic, but there is still a certain gap in the related researches on the influences of the grinding depth and the feed speed. Meanwhile, the lack of measurement methods when cutting into the workpiece also limits the further research. Therefore, the theoretical formula still needs to be constantly improved, and the finite element simulation should be fully applied, so as to optimize and compensate the deformation of ultra-thin dicing blades and improve the machining accuracy of workpieces.

     

  • loading
  • [1]
    冯克明, 王庆伟. 超薄砂轮高速精密切割磨削影响因素系统分析 [J]. 模具制造,2016,16(12):73-79.

    FENG Keming, WANG Qingwei. Systematic analysis on the influencing factors for super-speed precision cutting-grinding using the super-thin grinding wheel [J]. Die & Mould Manufacture,2016,16(12):73-79.
    [2]
    冯克明, 赵金坠. 先进磨削技术应用现状与展望 [J]. 轴承,2020(4):60-67.

    FENG Keming, ZHAO Jinzhui. Present situation and prospect of advanced grinding technology application [J]. Bearing,2020(4):60-67.
    [3]
    侯长红. 电子信息行业用超硬材料切割工具综述 [J]. 金刚石与磨料磨具工程,2010,30(1):60-62.

    HOU Changhong. Summary of superabrasive cutting tools for used in electronic information industry [J]. Diamond & Abrasives Engineering,2010,30(1):60-62.
    [4]
    轩闯, 项刚强, 廖燕玲, 等. 半导体加工用金刚石工具现状 [J]. 超硬材料工程,2021,33(1):41-49.

    XUAN Chuang, XIANG Gangqiang, LIAO Yanling, et al. Current status of diamond tools for semiconductor processing industry [J]. Superhard Material Engineering,2021,33(1):41-49.
    [5]
    ZHONG Y, DAI Y, XIAO H, et al. Experimental study on surface integrity and subsurface damage of fused silica in ultra-precision grinding [J]. The International Journal of Advanced Manufacturing Technology,2021,115:4021-4033. doi: 10.1007/s00170-021-07439-y
    [6]
    马岩, 袁慧珠, 鞠仁忠, 等. 金刚石砂轮刀片划切过程性能分析与三维建模 [J]. 金刚石与磨料磨具工程,2009(5):74-77.

    MA Yan, YUAN Huizhu, JU Renzhong, et al. Research of performance and three-dimensional modeling of diamond blade [J]. Diamond & Abrasives Engineering,2009(5):74-77.
    [7]
    黎克楠. 超薄砂轮高速动态行为与新型结合剂设计研究 [D]. 秦皇岛: 燕山大学, 2019.

    LI Kenan. Study on high-speed dynamic behavior of super-thin dicing blades and design of new bond [D]. Qinhuangdao: Yanshan University, 2019.
    [8]
    任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011.

    REN Jingxin, HUA Dingan. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011.
    [9]
    LI C, ZHANG L, DING J, et al. Kinematic modeling of surface topography ground by an electroplated diamond wheel [J]. The International Journal of Advanced Manufacturing Technology,2021,114:2753-2765. doi: 10.1007/s00170-021-06944-4
    [10]
    TAWAKOLI T, REINECKE H, VESALI A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding [C]. Amsterdam: Procedia CIRP, 2012, 1: 382-387.
    [11]
    徐芝纶. 弹性力学: 上册 [M]. 北京: 高等教育出版社, 2016.

    XU Zhilun. Elasticity: Volume I [M]. Beijing: Higher Education Press, 2016.
    [12]
    HU S. Study on the elastic-plastic interface and large deformation of axisymmetric disks under rotating status [J]. Applied Clay Science,2013,79(7):41-48.
    [13]
    张磊, 徐晓辉. 磨削速度和孔径比对砂轮强度与变形的影响分析 [J]. 应用科技,2010,37(7):35-39.

    ZHANG Lei, XU Xiaohui. Influence of grinding speed and on the grinding wheel's strength and deformation [J]. Applied Science and Technology,2010,37(7):35-39.
    [14]
    LI K, WANG M, CHEN F, et al. Analysis of the dynamic diameter of superthin diamond blades in the high speed and precision dicing process [J]. International Journal of Precision Engineering and Manufacturing,2019,20(7):1071-1081. doi: 10.1007/s12541-019-00128-7
    [15]
    MA Y. Research on performance of diamond blade in dicing saw based on ANSYS method [J]. Journal of Advanced Manufacturing Systems,2012,11(2):125-133. doi: 10.1142/S0219686712500114
    [16]
    赵忠虎, 阎红霞. 圆盘匀速转动时最大径向位移在何处? [J]. 力学与实践,2006(2):81-83.

    ZHAO Zhonghu, YAN Hongxia. Where is the maximum radial displacement when the disc rotates at a constant speed? [J]. Mechanics in Engineering,2006(2):81-83.
    [17]
    邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107.

    ZOU Qin, GUAN Yong, LI Yanguo, et al. Advances and perspectives of TiAl alloy and its composites [J]. Journal of Yanshan University,2020,44(2):95-107.
    [18]
    李工, 戴凤祥, 张翼飞, 等. Al系高熵合金高温氧化性能研究进展 [J]. 燕山大学学报,2021,45(3):189-201.

    LI Gong, DAI Fengxiang, ZHANG Yifei, et al. Research progress of high-temperature oxidation properties of Al-based high entropy alloys [J]. Journal of Yanshan University,2021,45(3):189-201.
    [19]
    胡满凤, 谢晋, 刘继楠, 等. 导光均光微槽透镜阵列精密磨削及其热压微成型 [J]. 机械工程学报,2017,53(23):190-196. doi: 10.3901/JME.2017.23.190

    HU Manfeng, XIE Jin, LIU Jinan, et al. Precision grinding and micro hot embossing of the microgroove lens array for light transmitting and uniforming [J]. Journal of Mechanical Engineering,2017,53(23):190-196. doi: 10.3901/JME.2017.23.190
    [20]
    EKHTERAEITOUSSI H, REZAEIFARIMANI M. Elasto-plastic deformation analysis of rotating disc beyond its limit speed [J]. International Journal of Pressure Vessels and Piping,2012,89(1):170-177.
    [21]
    STRASHNOV S, ALEXANDROV S, LANG L. Description of residual stress and strain fields in FGM hollow disc subject to external pressure [J]. Materials,2019,12:440-453. doi: 10.3390/ma12030440
    [22]
    JALALI M, SHAHRIARI B. Elastic stress analysis of rotating functionally graded annular disk of variable thickness using finite difference method [J]. Mathematical Problems in Engineering, 2018, 2018: 1871674.
    [23]
    CALLIOGLU H, SAYER M, DEMIR E. Elastic-plastic stress analysis of rotating functionally graded discs [J]. Thin-Walled Structures,2015,94(9):38-44.
    [24]
    THAWAIT A, SONDHI L, SANYAL S, et al. Stress and deformation analysis of clamped functionally graded rotating disks with variable thickness [J]. Mechanics and Mechanical Engineering,2019,23:202-211. doi: 10.2478/mme-2019-0027
    [25]
    CALLIOGLU H, TOPCU M, TARAKCILAR A. Elastic-plastic stress analysis of an orthotropic rotating disc [J]. International Journal of Mechanical Sciences,2006,48(9):985-990. doi: 10.1016/j.ijmecsci.2006.03.008
    [26]
    彭旭龙, 杨建强. 各向异性功能梯度夹层圆环的弹性分析 [J]. 长沙理工大学学报(自然科学版),2015,12(4):50-55.

    PENG XUlong, YANG Jianqiang. Elastic analysis of functionally graded polar orthotropic sandwich circular ring [J]. Journal of Changsha University of Science and Technology (Natural Science),2015,12(4):50-55.
    [27]
    KAMAL S, DIXIT U. Design of a disk-mandrel assembly for achieving rotational autofrettage in the disk [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2021,235(13):1-16.
    [28]
    KHALILI A, PEDDIESON J. Evaluation of elastic compensation using elastic/plastic rotating circular disk problems [J]. Mechanics Research Communications,2014,55(1):89-94.
    [29]
    LIN B, ZHOU P, WANG Z, et al. Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer [J]. Journal of Manufacturing Science and Engineering,2018,140:121001-121007. doi: 10.1115/1.4041245
    [30]
    董世明, 李一凡, 徐积刚. 不同加载条件下平面应力圆盘应力和位移的全场解 [J]. 工程科学与技术,2017,49(2):54-61.

    DONG Shiming, LI Yifan, XU Jigang. Full-field solution to stresses and displacements in the plane stress disk under different loading conditions [J]. Advanced Engineering Sciences,2017,49(2):54-61.
    [31]
    王启智. 对圆盘、圆环和圆孔研究与应用的感悟 [J]. 力学与实践,2015,37(3):372-376.

    WANG Qizhi. Perception about the study and application of disc, circular rings and circular hole [J]. Mechanics in Engineering,2015,37(3):372-376.
    [32]
    谢桂芝, 黄含, 盛晓敏, 等. 工程陶瓷高效深磨磨削力和损伤的研究 [J]. 湖南大学学报(自然科学版),2008, 38(5):26-30.

    XIE Guizhi, HUANG Han, SHENG Xiaomin, et al. Investigation on the grinding force and the ground damages in the high efficiency deep grinding of advanced ceramics [J]. Journal of Hunan University (Natural Sciences),2008, 38(5):26-30.
    [33]
    杨绪啟, 姚巨坤, 田欣利, 等. 平面碳化硅深切削缓进给磨削力的正交试验研究 [J]. 机床与液压,2018,46(11):96-100.

    YANG Xuqi, YAO Jukun, TIAN Xinli, et al. Orthogonal experiment research on cutting deeply and feed slowly grinding force of plane SiC [J]. Machine Tool & Hydraulics,2018,46(11):96-100.
    [34]
    吴玉厚, 沙勇, 李颂华, 等. 氮化硅陶瓷磨削力对表面质量的影响 [J]. 陶瓷学报,2019,40(6):718-724.

    WU Yuhou, SHA Yong, LI Songhua, et al. Experimental study on the effect of grinding force of silicon nitride ceramic on a surface quality [J]. Journal of Ceramics,2019,40(6):718-724.
    [35]
    王克军, 刘璇, 李辉, 等. 硬脆材料端面微磨削的磨削力及实验研究 [J]. 科学技术与工程,2016,16(29):212-216.

    WANG Kejun, LIU Xuan, LI Hui, et al. Modeling and experimental research on micro end grinding force of hard brittle material [J]. Science Technology and Engineering,2016,16(29):212-216.
    [36]
    WU J, CHEN G, CHEN F. Positioning accuracy control of dual-axis dicing saw for machining semiconductor chip [J]. The International Journal of Advanced Manufacturing Technology,2020,109:2299-2310. doi: 10.1007/s00170-020-05798-6
    [37]
    张庆玲, 张荣强, 金淼. 应变控制方式下ZG270-500材料特性试验研究 [J]. 燕山大学学报,2019,43(5):449-454.

    ZHANG Qingling, ZHANG Rongqiang, JIN Miao. Experimental study of ZG270-500 material characteristics under strain control modes [J]. Journal of Yanshan University,2019,43(5):449-454.
    [38]
    李蓓智. 高速高质量磨削理论、工艺、装备与应用 [M]. 上海: 上海科学技术出版社, 2012.

    LI Beizhi. Theory, technology, equipment and application of high-speed and high-quality grinding [M]. Shanghai: Shanghai Science and Technology Press, 2012.
    [39]
    李阳. 金刚石圆锯片的力学性能研究及工艺优化 [D]. 济南: 济南大学, 2017.

    LI Yang. Research on the mechanical performance and process optimization of diamond circular saw blade [D]. Jinan: Jinan University, 2017.
    [40]
    张进生, 王志, 吴军涛. 基于ANSYS的组合结构金刚石圆锯片基体离心力效应的分析 [J]. 金刚石与磨料磨具工程,2007(3):9-14.

    ZHANG Jinsheng, WANG Zhi, WU Juntao. Analysis by ANSYS for effect of centrifugal force on combined diamond saw blade [J]. Diamond & Abrasives Engineering,2007(3):9-14.
    [41]
    SONDHI L, THAWAIT A, SANYAL S, et al. Stress and deformation analysis of functionally graded varying thickness profile orthotropic rotating disk [J]. Materials Today: Proceedings,2020,33:5455-5460. doi: 10.1016/j.matpr.2020.03.258
    [42]
    KIZAKI T, HAO Y, OHASHI T, et al. Capability of a grinding wheel reinforced in hoop direction with carbon fiber [J]. CIRP Annals-Manufacturing Technology,2020,69:285-288. doi: 10.1016/j.cirp.2020.04.105
    [43]
    代东波. 超高速磨削CBN砂轮径向形变量研究 [D]. 广州: 广州大学, 2016.

    DAI Dongbo. Study on radial deformation of CBN grinding wheel in ultra-high speed grinding [D]. Guangzhou: Guangzhou University, 2016.
    [44]
    高东恩. 超高速砂轮基体动静特性的研究 [D]. 郑州: 河南工业大学, 2019.

    GAO Dongen. Research on the dynamic and static characteristics of ultra-high speed grinding wheel body [D]. Zhengzhou: Henan University of Technology, 2019.
    [45]
    YAMADA T, MORGAN M, LEE H, et al. Calculation of effective ground depth of cut by means of grinding process model [J]. Key Engineering Materials,2012,496:7-12.
    [46]
    JIANG B, SHEN J, XU X. Study on force characteristics for high speed sawing of quartz glass with diamond blade [J]. Materials Science Forum, 2014, 800/801: 144-149.
    [47]
    SHEN J, LU L, GONG Y, et al. Study on the influence of variation of contact arc zone on the single-pass sawing of sapphire wafer [J]. International Journal of Precision Engineering and Manufacturing,2018,19(9):1265-1271. doi: 10.1007/s12541-018-0150-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1003) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return