Citation: | HU Weidong, WANG Zhankui, Dong Yanhui, ZHANG Zhao, ZHU Yongwei. Surface morphology characterization of fixed abrasive lapping pad based on deep learning[J]. Diamond & Abrasives Engineering, 2022, 42(2): 186-192. doi: 10.13394/j.cnki.jgszz.2021.0096 |
[1] |
墨洪磊. 固结磨料研磨垫的制备工艺优化 [D]. 南京: 南京航空航天大学, 2013.
MO Honglei. Preparation optimization of fixed abrasive pad by thermosetting molding [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
|
[2] |
明舜, 李军, 张羽驰, 等. 磨粒尺寸和基体硬度对固结磨料抛光YAG晶体的影响 [J]. 金刚石与磨料磨具工程,2020,40(3):86-90.
MING Shun, LI Jun, ZHANG Yuchi, et al. Effect of abrasive size and matrix hardness on fixed abrasive polishing of YAG crystal [J]. Diamond & Abrasives Engineering,2020,40(3):86-90.
|
[3] |
凌顺志, 墨洪磊, 汪忠喜, 等. 磨料尺寸对固结金刚石聚集体磨料垫研磨石英玻璃加工性能的影响 [J]. 金刚石与磨料磨具工程,2017,37(5):12-18.
LING Shunzhi, MO Honglei, WANG Zhongxi, et al. Effect of abrasive sizes on processing characteristics of fixed diamond aggregations pad lapping quartz glass [J]. Diamond & Abrasives Engineering,2017,37(5):12-18.
|
[4] |
徐胜. 磨粒改性对固结磨料垫研磨蓝宝石性能的影响 [D]. 南京: 南京航空航天大学, 2016.
XU Sheng. Effect of abrasive modification on sapphire lapping performance by fixed abrasive pad [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
|
[5] |
朱永伟, 王成, 徐俊, 等. 固结磨料研磨垫孔隙结构对其加工性能的影响 [J]. 光学精密工程,2014,266(4):911-917.
ZHU Yongwei, WANG Cheng, XU Jun, et al. Influence of pore distribution of fixed abrasive pad on its machining performance [J]. Optics & Precision Engineering,2014,266(4):911-917.
|
[6] |
付杰. 固结磨料研磨抛光垫磨粒保持性能研究 [D]. 南京: 南京航空航天大学, 2013.
FU Jie. Abrasives retaining performance of fixed abrasive pad [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
|
[7] |
霍凤伟, 金洙吉, 康仁科, 等. 细粒度金刚石砂轮表面磨粒识别研究 [J]. 大连理工大学学报,2007,47(3):358-362. doi: 10.3321/j.issn:1000-8608.2007.03.010
HUO Fengwei, JIN Zhuji, KANG Renke, et al. Recognition of diamond grains on surface of fine diamond grinding wheel [J]. Journal of Dalian University of Technology,2007,47(3):358-362. doi: 10.3321/j.issn:1000-8608.2007.03.010
|
[8] |
贾坡, 田建艳, 杨英波, 等. 基于机器视觉的滚抛磨块缺陷检测方法 [J]. 金刚石与磨料磨具工程,2021,41(1):76-82.
JIA Po, TIAN Jianyan, YANG Yingbo, et al. Defect detection method of abrasive block based on machine vision [J]. Diamond & Abrasives Engineering,2021,41(1):76-82.
|
[9] |
赵玉康, 毕文波, 葛培琪. 电镀金刚石线锯表面磨粒分布密度的多相机视觉检测 [J]. 金刚石与磨料磨具工程,2021,41(2):64-68.
ZHAO Yukang, BI Wenbo, GE Peiqi. Multi-camera visual inspection of abrasives distribution density on electroplated diamond wire saw surface [J]. Diamond & Abrasives Engineering,2021,41(2):64-68.
|
[10] |
徐杨. 面向视频监控的动态目标检测、跟踪与识别关键技术研究 [D]. 沈阳: 东北大学, 2012.
XU Yang. Research on key technologies of dynamic objects detection, tracking and recognition for video surveillance [D]. Shenyang: Northeastern University, 2012.
|
[11] |
杨智宏, 贺石中, 冯伟, 等. 基于Mask R-CNN网络的磨损颗粒智能识别与应用 [J]. 摩擦学学报,2021,41(1):105-114.
YANG Zhihong, HE Shizhong, FENG Wei, et al. Intelligent identification of wear particles based on Mask R-CNN network and application [J]. Tribology,2021,41(1):105-114.
|
[12] |
肖潇. 基于深度学习的遥感图像处理系统的设计与实现 [D]. 北京: 北京邮电大学, 2019.
XIAO Xiao. Design and implementation of remote sensing image processing system based on deep learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
[13] |
张娟娟, 宋圭辰, 刘斌, 等. 改进的基于Mask R-CNN的碳纤维图像分割方法 [J]. 中国科技论文, 2021, 16(11): 1189-1194, 1208.
ZHANG Juanjuan, SONG Guichen, LIU Bin, et al. Improved Mask R-CNN image segmentation method for carbon fiber [J]. China Sciencepaper, 2021, 16(11): 1189-1194, 1208.
|
[14] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
|
[15] |
付发, 未建英, 张丽娜. 基于卷积网络的遥感图像建筑物提取技术研究 [J]. 软件工程,2018,21(6):4-7.
FU Fa, WEI Jianying, ZHANG Lina. A study of building extraction remote sensing imagery based on convolution network [J]. Software Engineering,2018,21(6):4-7.
|
[16] |
安超, 魏海军, 刘竑, 等. 基于Mask R-CNN的铁谱磨粒智能分割与识别 [J]. 润滑与密封,2020,45(3):112-117.
AN Chao, WEI Haijun, LIU Hong, et al. Ferrographic wear debris intelligent segmentation and recognition based on Mask R-CNN [J]. Lubrication Engineering,2020,45(3):112-117.
|
[17] |
林志洁, 罗壮, 赵磊, 等. 特征金字塔多尺度全卷积目标检测算法 [J]. 浙江大学学报(工学版),2019,53(3):533-540.
LIN Zhijie, LUO Zhuang, ZHAO Lei, et al. Multi-scale convolution target detection algorithm with feature pyramid [J]. Journal of Zhejiang University(Engineering Science),2019,53(3):533-540.
|