Citation: | ZHANG Yang, ZOU Qin, LI Yanguo, LI Yuanyuan, XU Jiangbo, WANG Mingzhi. Research progress and prospect of high entropy oxide[J]. Diamond & Abrasives Engineering, 2022, 42(1): 30-41. doi: 10.13394/j.cnki.jgszz.2021.0091 |
[1] |
YEH J, CHEN S, LIN S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
|
[2] |
ROST C, SACHET E, BORMAN T, et al. Entropy-stabilized oxides [J]. Nature Communications,2015,6(1):1-8.
|
[3] |
GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports,2016,6(1):1-10. doi: 10.1038/s41598-016-0001-8
|
[4] |
SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nature Communications,2018,9:4980. doi: 10.1038/s41467-018-07160-7
|
[5] |
JOHANSSON K, RIEKDHR L, FRITZE S, et al. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition [J]. Surface and Coatings Technology,2018,349:529-539. doi: 10.1016/j.surfcoat.2018.06.030
|
[6] |
QIN Y, LIU J, LI F, et al. A high entropy silicide by reactive spark plasma sintering [J]. Journal of Advanced Ceramics,2019,8(1):148-152. doi: 10.1007/s40145-019-0319-3
|
[7] |
ZHANG R, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorganic Chemistry,2018,57(20):13027-13033. doi: 10.1021/acs.inorgchem.8b02379
|
[8] |
BERARDAN D, FRANGER S, DRAGEO D, et al. Colossal dielectric constant in high entropy oxides [J]. Rapid Research Letters,2016,10(4):328-333.
|
[9] |
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nature Reviews Materials,2020,5(4):295-309. doi: 10.1038/s41578-019-0170-8
|
[10] |
SARKAR A, WANG Q, SCHIELE A, et al. High-entropy oxides: Fundamental aspects and electrochemical properties [J]. Advanced Materials,2019,31(26):201806236.
|
[11] |
BERARDAN D, FRANGER S, MEENA A, et al. Room temperature lithium superionic conductivity in high entropy oxides [J]. Journal of Materials Chemistry A,2016,4(24):9536-9541. doi: 10.1039/C6TA03249D
|
[12] |
WANG Q, SARKAR A, WANG D, et al. Multi-anionic and-cationic compounds: New high entropy materials for advanced Li-ion batteries [J]. Energy & Environmental Science,2019,12(8):2433-2442.
|
[13] |
WANG Q, SARKAR A, LI Z, et al. High entropy oxides as anode material for Li-ion battery applications: A practical approach [J]. Electrochemistry Communications,2019,100:121-125. doi: 10.1016/j.elecom.2019.02.001
|
[14] |
QIU N, CHEN H, YANG Z, et al. A high entropy oxide (Mg0. 2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance [J]. Journal of Alloys and Compounds,2019,777:767-774. doi: 10.1016/j.jallcom.2018.11.049
|
[15] |
SEGURA M, TAKAYAMA T, BERARDAN D, et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides [J]. Applied Physics Letters,2019,114(12):122401. doi: 10.1063/1.5091787
|
[16] |
ZHANG J, YAN J, CALDER S, et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide [J]. Chemistry of Materials,2019,31(10):3705-3711. doi: 10.1021/acs.chemmater.9b00624
|
[17] |
PARK M, HWANG C. Fluorite-structure antiferroelectrics [J]. Reports on Progress in Physics,2019,82(12):124502. doi: 10.1088/1361-6633/ab49d6
|
[18] |
SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency [J]. Dalton Transactions,2017,46(36):12167-12176. doi: 10.1039/C7DT02077E
|
[19] |
DJENADIC R, SARKAR A, LEMENS O, et al. Multicomponent equiatomic rare earth oxides [J]. Materials Research Letters,2017,5(2):102-109. doi: 10.1080/21663831.2016.1220433
|
[20] |
王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展 [J]. 航空材料学报,2019,39(6):1-19.
WANG Xiaopeng, KONG Fantao. Resent development in high-entropy alloys and other high-entropy materials [J]. Journal of Aeronautical Materials,2019,39(6):1-19.
|
[21] |
CHEN K, PEI X, TANG L, et al. A five-component entropy-stabilized fluorite oxide [J]. Journal of the European Ceramic Society,2018,38(11):4161-4164. doi: 10.1016/j.jeurceramsoc.2018.04.063
|
[22] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides [J]. Journal of the European Ceramic Society,2018,38(5):2318-2327. doi: 10.1016/j.jeurceramsoc.2017.12.058
|
[23] |
JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides [J]. Scripta Materialia,2018,142:116-120. doi: 10.1016/j.scriptamat.2017.08.040
|
[24] |
孟晓娟, 李丹丹, 贾翠超, 等. CH3NH3PbI3-xBrx薄膜的合成及光电性能 [J]. 燕山大学学报,2019,43(4):331-336.
MENG Xiaojuan, LI Dandan, JIA Cuichao, et al. Synthesis and photoelectronic properties of CH3NH3PbI3-xBrx films [J]. Journal of Yanshan University,2019,43(4):331-336.
|
[25] |
DABROWA J, STYGAR M, MLKULA, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure [J]. Materials Letters,2018,216:32-36. doi: 10.1016/j.matlet.2017.12.148
|
[26] |
顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展 [J]. 中国材料进展,2019(9):855-865.
GU Junfeng, ZOU Ji, ZHANG Fan, et al. Recent progress in high-entropy ceramic materials [J]. Materials China,2019(9):855-865.
|
[27] |
DUPUY A, WANG X, SCHOENUNG J. Entropic phase transformation in nanocrystalline high entropy oxides [J]. Materials Research Letters,2019,7(2):60-67. doi: 10.1080/21663831.2018.1554605
|
[28] |
SARKAR A, DJENADIC R, USHARANI N, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides [J]. Journal of the European Ceramic Society,2017,37(2):747-754. doi: 10.1016/j.jeurceramsoc.2016.09.018
|
[29] |
MAO A, XIANG H, ZHANG Z, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder [J]. Journal of Magnetism and Magnetic Materials,2019,484:245-252. doi: 10.1016/j.jmmm.2019.04.023
|
[30] |
BIESUZ M, SPIRIDIGLIOZZI L, DELL'AGLI G, et al. Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods [J]. Journal of Materials Science,2018,53(11):8074-8085. doi: 10.1007/s10853-018-2168-9
|
[31] |
HONG W, CHEN F, SHEN Q, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics [J]. Journal of the American Ceramic Society,2019,102(4):2228-2237.
|
[32] |
李工, 崔鹏, 张丽军, 等. 高熵合金研究现状 [J]. 燕山大学学报,2018,42(2):95-104.
LI Gong, CUI Peng, ZHANG Lijun, et al. Current studies of high entropy alloys [J]. Journal of Yanshan University,2018,42(2):95-104.
|
[33] |
BRAUN J, ROST C, LIM M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides [J]. Advanced Materials,2018,30(51):1805004. doi: 10.1002/adma.201805004
|
[34] |
WITTE R, SARKAR A, KRUK R, et al. High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites [J]. Physical Review Materials,2019,3(3):034406. doi: 10.1103/PhysRevMaterials.3.034406
|
[35] |
MAO A, QUAN F, XIANG H, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder [J]. Journal of Molecular Structure,2019,1194:11-18. doi: 10.1016/j.molstruc.2019.05.073
|
[36] |
DONG Y, REN K, LU Y, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. Journal of the European Ceramic Society,2019,39(7):2574-2579. doi: 10.1016/j.jeurceramsoc.2019.02.022
|
[37] |
邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107.
ZOU Qin, GUAN Yong, LI Yanguo, et al. Research progress and development trend of TiAl alloy and its composite materials [J]. Journal of Yanshan University,2020,44(2):95-107.
|
[38] |
MAO A, XIANG H, ZHANG Z, et al. A new class of spinel high-entropy oxides with controllable magnetic properties [J]. Journal of Magnetism and Magnetic Materials,2020,497:165884. doi: 10.1016/j.jmmm.2019.165884
|
[39] |
陈见, 尹周澜, 张衡中. Li、Mn掺杂对MgCoNiCuZnO5导电性能的影响 [J]. 有色金属工程,2019,9(8):1-6.
CHEN Jian, YIN Zhoulan, ZHANG Hengzhong. Effect of Li and Mn doping on the conductivity of MgCoNiCuZnO5 [J]. Nonferrous Metals Engineering,2019,9(8):1-6.
|
[40] |
陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望 [J]. 陶瓷学报,2020(2):157-163.
CHEN Kepi, LI Zemin, MA Jinxu, et al. Research progress and prospect of high-entropy ceramic materials [J]. Journal of Ceramics,2020(2):157-163.
|
[41] |
CHEN H, FU J, ZHANG P, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability [J]. Journal of Materials Chemistry A,2018,6(24):11129-11133. doi: 10.1039/C8TA01772G
|
[42] |
CHEN H, LIN W, ZHANG Z, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: Dispersion of catalysts via entropy maximization [J]. ACS Materials Letters,2019,1(1):83-88. doi: 10.1021/acsmaterialslett.9b00064
|
[43] |
EDALATI P, WANG Q, RAZAVI-KHOSROSHAHI H, et al. Photocatalytic hydrogen evolution on a high-entropy oxide [J]. Journal of Materials Chemistry A,2020,8(7):3814-3821. doi: 10.1039/C9TA12846H
|
[44] |
ZHENG Y, YI Y, FAN M, et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries [J]. Energy Storage Materials,2019,23:678-683. doi: 10.1016/j.ensm.2019.02.030
|
[45] |
SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage [J]. Nature Communications,2018,9(1):3400. doi: 10.1038/s41467-018-05774-5
|
[46] |
WANG J, CUI Y, WANG Q, et al. Layered high-entropy oxide structures for reversible energy storage [J]. Energy,2020,1:1-7.
|