There are obvious textures on milled integrated blisk of aero-engine which has complicated structure to machine so that the roughness and the profile accuracy could not meet the design requirements. In addition, the surface quality and the profile accuracy of manual polished blisk would not satisfy the process requirements as well. To solve these problems, the deformation behavior of numerical control (NC) belt grinding on integrated blisk is investigated and related tests are implemented. A new open NC belt grinding method is proposed and the the full profile grinding process of integrated blisk NC belt grinding is analyzed, the deformation mechanism of which is explained. Based on ANSYS-relied simulation analysis of grinding deformation, a grinding pressure control system with pressure feedback is proposed to control the deformation. The grinding tests of NC belt grinding on integrated blisk are carried out on test equipment. Results indicate that the integrated blisk, after NC belt grinding, has surface roughness less than 0.4 μm and profile accuracy better than 0.05 mm. In conclusion, the developed method could fit the blade shape well, which is to enhance the grinding efficiency and meet the design requirements by replacing manual polishing with NC belt grinding.