Citation: | HE Yan, LI Xiang, GAO Xingjun, FAN Lin, LIU Ming, XU Zicheng. Modeling of ultra-thin diamond slice and simulation of SiC wafer cutting based on Python language[J]. Diamond & Abrasives Engineering, 2023, 43(5): 621-631. doi: 10.13394/j.cnki.jgszz.2003.0001 |
[1] |
XUN Q, XUN B, LI Z, et al. Application of SiC power electronic devices in secondary power source for aircraft [J]. Renewable and Sustainable Energy Reviews,2017,70:1336-1342. doi: 10.1016/j.rser.2016.12.035
|
[2] |
WRIGHT N, HORSFALL A. SiC sensors: A review [J]. Journal of Physics D: Applied Physics,2007,40(20):6345. doi: 10.1088/0022-3727/40/20/S17
|
[3] |
CHOI P H, KIM Y P, KIM M-S, et al. Side-illuminated photoconductive semiconductor switch based on high purity semi-insulating 4H-SiC [J]. IEEE Transactions on Electron Devices,2021,68(12):6216-6221. doi: 10.1109/TED.2021.3117535
|
[4] |
MATSUNAMI H. Fundamental research on semiconductor SiC and its applications to power electronics [J]. Proceedings of the Japan Academy, Series B,2020,96(7):235-254. doi: 10.2183/pjab.96.018
|
[5] |
LEWKE D, DOHNKE K O, ZUHLKE H U, et al. Thermal laser separation: A novel dicing technology fulfilling the demands of volume manufacturing of 4H-SiC devices [J]. Materials Science Forum,2015,821/823:528-532. doi: 10.4028/www.scientific.net/MSF.821-823.528
|
[6] |
YANG Y L, LIU J L, CHEN G W, et al. Highly reliable four-point bending test using stealth dicing method for adhesion evaluation: 2019 International Conference on Electronics Packaging (ICEP) [C]. Niigata: IEEE, 2019.
|
[7] |
OKADA T, TOMITA T, KATAYAMA H, et al. Local melting of Au/Ni thin films irradiated by femtosecond laser through GaN [J]. Applied Physics A,2019,125(10):1-6. doi: 10.1007/s00339-019-2982-1
|
[8] |
ZHANG Z, WEN Z, SHI H, et al. Dual laser beam asynchronous dicing of 4H-SiC wafer [J]. Micromachines,2021,12(11):1331. doi: 10.3390/mi12111331
|
[9] |
GE M, ZHU H, HUANG C, et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments [J]. Materials Science in Semiconductor Processing,2018,74:261-266. doi: 10.1016/j.mssp.2017.10.027
|
[10] |
FUJITA T, IZUMI Y, WATANABE J. Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing,2019,13(4):JAMDSM0073. doi: 10.1299/jamdsm.2019jamdsm0073
|
[11] |
CVETKOVIĆ S, MORSBACH C, RISSING L. Ultra-precision dicing and wire sawing of silicon carbide (SiC) [J]. Microelectronic Engineering,2011,88(8):2500-2504. doi: 10.1016/j.mee.2011.02.026
|
[12] |
JI S, LIU L, ZHAO J, et al. Finite element analysis and simulation about microgrinding of SiC [J]. Journal of Nanomaterials,2015(5):1-9. doi: 10.1155/2015/575398
|
[13] |
WEI J, WANG H, LIN B, et al. A force model in single grain grinding of long fiber reinforced woven composite [J]. The International Journal of Advanced Manufacturing Technology,2019,100(1):541-552. doi: 10.1007/s00170-018-2719-x
|
[14] |
GU Y, ZHU W, LIN J, et al. Subsurface damage in polishing process of silicon carbide ceramic [J]. Materials,2018,11(4):506. doi: 10.3390/ma11040506
|
[15] |
CHAI P, LI S, LI Y. Modeling and experiment of the critical depth of cut at the ductile–brittle transition for a 4H-SiC single crystal [J]. Micromachines,2019,10(6):382. doi: 10.3390/mi10060382
|
[16] |
SONG K, XIAO G, CHEN S, et al. Analysis of thermal-mechanical causes of abrasive belt grinding for titanium alloy [J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3241-3260. doi: 10.1007/s00170-021-06795-z
|
[17] |
TANG A, GUO W, YUAN Z, et al. Simulation analysis on cutting forces based on surface topography of fixed abrasive wire saw [J]. Materials Science in Semiconductor Processing,2021,132:105900. doi: 10.1016/j.mssp.2021.105900
|
[18] |
LI X, GAO Y, GE P, et al. The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon [J]. Materials Science in Semiconductor Processing,2019,91:316-326. doi: 10.1016/j.mssp.2018.12.004
|
[19] |
YANG Z, HE D, ZHANG Y, et al. Determination of the grinding force on optical glass based on a diamond wheel with an ordered arrangement of abrasive grains [J]. The International Journal of Advanced Manufacturing Technology,2021,115(4):1237-1248. doi: 10.1007/s00170-021-07204-1
|
[20] |
AURICH J C, BRAUN O, WARNECKE G, et al. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation [J]. CIRP Annals,2003,52(1):275-280. doi: 10.1016/S0007-8506(07)60583-6
|
[21] |
HERZENSTIEL P, AURICH J. CBN-grinding wheel with a defined grain pattern–extensive numerical and experimental studies [J]. Machining Science and Technology,2010,14(3):301-322. doi: 10.1080/10910344.2010.511574
|
[22] |
LI H, YU T, ZHU L, et al. Analysis of loads on grinding wheel binder in grinding process: Insights from discontinuum-hypothesis-based grinding simulation [J]. The International Journal of Advanced Manufacturing Technology,2015,78(9/10/11/12):1943-1960. doi: 10.1007/s00170-014-6767-6
|
[23] |
LI H, YU T, ZHU L, et al. Modeling and simulation of grinding wheel by discrete element method and experimental validation [J]. The International Journal of Advanced Manufacturing Technology,2015,81(9):1921-1938. doi: 10.1007/s00170-015-7205-0
|
[24] |
CHEN H P, CAO H Y, WU R L, et al. Modeling and simulation of high-speed cylindrical grinding based on 3D grinding wheel topography: MTMCE 2019 [C]. Wuhan: IOP Publishing, 2019.
|
[25] |
CHEN C, TANG J, CHEN H, et al. Research about modeling of grinding workpiece surface topography based on real topography of grinding wheel [J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):2411-2421. doi: 10.1007/s00170-017-0668-4
|
[26] |
ZHANG Y, FANG C, HUANG G, et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding [J]. International Journal of Machine Tools and Manufacture,2018,127:14-27. doi: 10.1016/j.ijmachtools.2018.01.002
|
[27] |
WANG Y, WANG H, WEI J, et al. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: Modeling, experimental verification and material removal mechanism [J]. Ceramics International,2019,45(13):15920-15927. doi: 10.1016/j.ceramint.2019.05.100
|
[28] |
MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives [M]. New York: Industrial Press, 2008.
|
[29] |
HOU Z B, KOMANDURI R. On the mechanics of the grinding process–Part I. Stochastic nature of the grinding process [J]. International Journal of Machine Tools and Manufacture,2003,43(15):1579-1593. doi: 10.1016/S0890-6955(03)00186-X
|
[30] |
CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA: Proceedings of the 4th European LS-DYNA users conference [C]. Germany: Ulm, 2003.
|
[31] |
ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression [J]. Journal of Engineering Materials and Technology,2019,141(1):011007. doi: 10.1115/1.4040591
|
[32] |
DAI J, SU H, HU H, et al. The influence of grain geometry and wear conditions on the material removal mechanism in silicon carbide grinding with single grain [J]. Ceramics International,2017,43(15):11973-11980. doi: 10.1016/j.ceramint.2017.06.047
|
[33] |
ZHOU W, SU H, DAI J, et al. Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding [J]. Ceramics International,2018,44(17):21451-21460. doi: 10.1016/j.ceramint.2018.08.206
|
[34] |
HUANG Y, WANG M, LI J, et al. Effect of abrasive particle shape on the development of silicon substrate during nano-grinding [J]. Computational Materials Science,2021,193:110420. doi: 10.1016/j.commatsci.2021.110420
|
[35] |
LI P, GUO X, YUAN S, et al. Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations [J]. Applied Surface Science,2021,554(2008):149668. doi: 10.1016/j.apsusc.2021.149668
|
[36] |
WAN L, LI L, DENG Z, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics [J]. Journal of Manufacturing Processes,2019,47:41-51. doi: 10.1016/j.jmapro.2019.09.024
|
[37] |
SURATWALA T, STEELE R, SHEN N, et al. Lateral cracks during sliding indentation on various optical materials [J]. Journal of the American Ceramic Society,2020,103(2):1343-1357. doi: 10.1111/jace.16787
|
[38] |
NIAN D. Effects of depth of cutting on damage interferences during double scratching on single crystal SiC [J]. Crystals,2020,10(6):519. doi: 10.3390/cryst10060519
|
[39] |
DUAN N, YU Y, SHI W, et al. Investigation on diamond damaged process during a single-scratch of single crystal silicon carbide [J]. Wear,2021,486:204099. doi: 10.1016/j.wear.2021.204099
|
[40] |
ZHANG B, YIN J. The ‘skin effect’of subsurface damage distribution in materials subjected to high-speed machining [J]. International Journal of Extreme Manufacturing,2019,1(1):126-137. doi: 10.1088/2631-7990/ab103b
|
[41] |
李思, 晏永飞, 刘慧轩, 等. 高压磨料水射流切割低碳合金钢的试验研究 [J]. 辽宁石油化工大学学报,2019,39(5):88-92. doi: 10.3969/j.issn.1672-6952.2019.05.016
|
[42] |
ZHU D, YAN S, LI B. Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness [J]. Computational Materials Science,2014,92:13-21. doi: 10.1016/j.commatsci.2014.05.019
|
[43] |
WANG P, GE P, GE M, et al. Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw [J]. Ceramics International,2019,45(1):384-393. doi: 10.1016/j.ceramint.2018.09.178
|
[44] |
GAO Y, CHEN Y, GE P, et al. Study on the subsurface microcrack damage depth in electroplated diamond wire saw slicing SiC crystal [J]. Ceramics International,2018,44(18):22927-22934. doi: 10.1016/j.ceramint.2018.09.088
|