Abstract:
The effects of adding CuZnSn pre-alloyed powder, mass fractions of which were 2%, 6%, 10% and 14%, respectively, on some performances of the iron-based matrix of the diamond ceramic edging wheel were studied, namely the hot-pressed sintering structures, the phase compositions and the mechanical properties. The results show that the iron-based matrix without pre-alloyed powder mainly consists of three kinds of structures: gray-white, light gray and dark gray. The main phases are γ-Fe, (Cu, Sn), (γ-Fe, Ni) solid solution and Fe4Cu3、Cu41Sn11 and Ni4Sn intermetallic compounds. When the matrix with pre-alloyed powder added are sintered at the same conditions, the gray-white structure area decreases with increasing light gray structure area and stable dark gray structure area. In addition to the above phases, Cu0.61Zn0.39 and CuZn2 are also found. With the increase of CuZnSn pre-alloyed powder content, the density, the hardness and the bending strength of iron-based matrix increase first and then decrease, while the wear amount decreases first and then increases. When the mass fraction of CuZnSn pre-alloyed powder is 6%, the maximum values are 99.8%, 104.4 HRB, 947.2 MPa and the minimum value is 0.272 5 g, respectively. Adding appropriate amount of CuZnSn pre-alloyed powder can increase the liquid content of the iron-based matrix, which improves the fluidity of the powder and then the properties of the matrix. However, excessive CuZnSn pre-alloy powder would reduce the comprehensive properties of the matrix.