Research on process optimization and trajectory planning of EA4T axle robot grinding
-
摘要: 为突破动车组EA4T车轴人工磨抛时作业强度大、加工质量不稳定等困境,采用工业机器人智能磨抛系统研究EA4T钢试件的磨抛工艺,并提出EA4T车轴机器人磨抛轨迹离线编程方法。首先对EA4T钢试件进行机器人磨抛正交试验;然后采用熵值法对试验结果进行多目标工艺优化,得出最优磨抛工艺参数组合;最后采用离线编程方法规划EA4T车轴轴肩部位的磨抛轨迹,并将生成的加工程序导入机器人示教器进行磨抛轨迹试验验证。研究表明,优化后的磨抛工艺参数组合为磨头目数400#(筛网孔径为0.038 mm)、磨抛力15 N、进给速度50 mm/s、主轴转速750 r/min。采用该参数组合磨抛后,EA4T钢试件的表面粗糙度Ra为0.338 μm、材料去除深度h为1.67 μm,均符合指标要求。采用最优磨抛工艺参数配合机器人磨抛轨迹规划方法,能够快速精准完成EA4T车轴轴肩部位的磨抛作业,具有一定的工程应用价值。Abstract:
Objectives The EA4T axle is a critical load-bearing component of electric multiple unit (EMU) train bodies, directly influencing operational safety and reliability. As a high-end product with stringent technical requirements and complex manufacturing processes, the shoulder position of the EA4T axle is stressed repeatedly and there is stress concentration during service. Consequently, in the process of axle production, it is necessary to grind the axle shoulder to control its surface roughness and material removal depth. Current manual grinding methods for EA4T axle shoulder suffer from high labor intensity, inconsistent surface quality, and low efficiency. In order to effectively break through the current manual grinding dilemma of the EMU EA4T axle, the implementation of flexible grinding using an industrial robotic intelligent grinding system equipped with a constant-force control device presents a feasible solution to replace manual operations and achieve automated processing. Therefore, it is essential to carry out research on the grinding process of EA4T steel components, and explore the grinding process methods that meet the surface quality requirements of EA4T axle machining. Combined with the off-line programming method for EA4T axle robot grinding trajectory, the axis shoulder grinding trajectory is planned and the robot machining program is generated to realize high-quality and efficient automatic grinding of the EA4T axle by robot. Methods Firstly, an independently developed robotic intelligent constant-force grinding system serves as the experimental platform. EA4T steel specimens with dimensions of 150 mm × 63 mm × 9 mm are prepared as test pieces. Based on the quality control requirement that the surface roughness of the EA4T axle after grinding must not exceed 0.4 μm, and considering the actual situation of manual grinding process parameters, a Taguchi method-based orthogonal experiment with four factors and four levels is designed and implemented. In the experiment, a hand-held surface roughness measuring instrument is used to measure the surface roughness after grinding, and a precision analytical balance is used to measure the weight of the specimen before and after grinding to calculate the material removal depth. Thus, the surface roughness and the material removal depth of the specimen under different process parameters are obtained. Secondly, analysis of variance and significance testing are conducted to determine the significance level of the influence of each process parameter on the experimental results. The influence of the grit size of grinding tools, grinding force, feed speed, and spindle speed on the surface roughness and material removal depth is analyzed. Then, by calculating the entropy of each index to determine the weight coefficient, the surface roughness and material removal depth in the experimental results of each group are converted into comprehensive score values for evaluation. The optimal grinding process parameter combination with minimum surface roughness and material removal depth is obtained through comprehensive score range analysis. Finally, the off-line programming method is employed to establish a virtual model of the robotic intelligent grinding system within the robot off-line programming software. The 3D model of the EA4T axle is imported into the virtual environment. Based on the flexible grinding module at the end-effector, parameters including grinding head dimensions, end-effector tools, and trajectory configurations are defined. The robot machining system program SRC file is generated and subsequently transferred to the robot teach pendant. The grinding force, feed rate and spindle speed corresponding to the optimal grinding process parameters are entered into the control system. Physical grinding experiments are conducted on EA4T axle prototypes to validate the feasibility of the proposed grinding methodology. Results Through the grinding orthogonal experiments and physical verification experiments, the following results are obtained. (1) The order of influence of grinding process parameters on the surface roughness of EA4T steel is: abrasive grit size > spindle speed > feed rate > grinding force, with abrasive grit size exhibiting the most significant impact on surface roughness. The order of influence of process parameters on material removal depth is spindle speed > abrasive grit size > feed rate > grinding force, with spindle speed being the most influential. (2) With the goal of minimizing the comprehensive score of surface roughness and material removal depth, the optimized grinding parameter combination is selected by choosing the levels with the lowest mean values across all parameter groups. The selected parameters are brasive grit size 400#, grinding force 15 N, feed rate 50 mm/s, and spindle speed 750 r/min. Using this parameter combination, the post-grinding surface roughness reaches 0.338 μm, and the material removal depth is 1.67 μm, effectively improving surface quality while meeting specification requirements. (3) The off-line programming method is used to plan the grinding trajectory. The simulation and experiment trajectories of EA4T robot grinding completely coincide, realizing automatic grinding robot of the EA4T axle shoulder position without interference, singularities and with full reachability. Conclusions The paper conducts experimental research on process optimization and trajectory planning for robotic intelligent grinding of the EA4T axle. Through orthogonal experiments combined with the entropy weight method, the influence patterns of grinding processes on quality are revealed. The optimal process parameter combination for minimizing surface roughness and material removal depth is determined. The off-line programming method enables quick and accurate planning of a robot grinding trajectory that is non-interfering, non-singular and fully reachable. The proposed method improves grinding efficiency and surface quality, meets the requirements of grinding efficiency and surface quality of EA4T axle, and can be applied in actual production and processing, effectively breaking through the predicament of low efficiency and poor consistency of EA4T axle. -
Key words:
- EA4T axle /
- robot grinding /
- process optimization /
- grinding trajectory /
- off-line programming
-
表 1 EA4T钢中各元素质量分数
Table 1. Mass fraction of each element in EA4T steel
元素 质量分数 w / % 元素 质量分数 w / % Mn 0.50~0.80 C 0.22~0.29 Cr 0.90~1.20 Si 0.15~0.40 Mo 0.15~0.30 Cu ≤0.30 Ni ≤0.30 V ≤0.06 P ≤0.020 S ≤0.015 Fe 余量 表 2 EA4T钢磨抛正交试验次序与参数
Table 2. Grinding and polishing orthogonal experiment sequences and parameters of EA4T steel
序号 A
磨头目数
GB
磨抛力
F / NC
进给速度
v / (mm·s−1)D
主轴转速
n / (r·min−1)1 120# 15 20 750 2 240# 15 30 1500 3 320# 15 40 2250 4 400# 15 50 3000 5 320# 20 30 750 6 400# 20 20 1500 7 120# 20 50 2250 8 240# 20 40 3000 9 400# 25 40 750 10 320# 25 50 1500 11 240# 25 20 2250 12 120# 25 30 3000 13 320# 30 50 750 14 120# 30 40 1500 15 400# 30 30 2250 16 320# 30 20 3000 表 3 EA4T钢磨抛正交试验结果
Table 3. Orthogonal experiment results of EA4T steel grinding and polishing
序号 表面粗糙度
Ra / μm材料去除深度
h / μm误差列 1 0.931 5.67 1 2 0.709 4.67 2 3 0.532 2.33 3 4 0.598 3.00 4 5 0.673 3.67 4 6 0.313 2.67 3 7 0.725 10.67 2 8 0.627 6.33 1 9 0.561 2.00 2 10 0.753 3.33 1 11 0.376 10.67 4 12 0.978 15.33 3 13 0.695 3.67 3 14 0.659 10.00 4 15 0.309 2.67 1 16 0.363 6.00 2 表 4 表面粗糙度方差分析
Table 4. Variance analysis results of surface roughness
影响因素 平方和 均方 F 显著性 A 磨头目数 G 0.086 0.029 5.456 0.099 B 磨抛力 F 0.294 0.098 18.760 0.019 C 进给速度 v 0.110 0.037 7.013 0.072 D 主轴转速 n 0.094 0.031 5.965 0.088 表 5 材料去除深度方差分析
Table 5. Variance analysis results of material removal depth
影响因素 平方和 均方 F 显著性 A 磨头目数 G 30.888 10.296 2.756 0.214 B 磨抛力 F 143.258 47.753 12.781 0.032 C 进给速度 v 34.764 11.582 3.100 0.189 D 主轴转速 n 6.469 2.165 0.580 0.667 表 6 试验综合评分
Table 6. Experiment overall score
序号 表面粗糙度 Ra / μm 材料去除深度 h / μm 综合评分 S 1 0.931 5.67 2.873 2 0.709 4.67 2.333 3 0.532 2.33 1.269 4 0.598 3.00 1.583 5 0.673 3.67 1.902 6 0.313 2.67 1.279 7 0.725 10.67 4.802 8 0.627 6.33 2.965 9 0.561 2.00 1.151 10 0.753 3.33 1.810 11 0.376 10.67 4.597 12 0.978 15.33 6.862 13 0.695 3.67 1.915 14 0.659 10.00 4.489 15 0.309 2.67 1.277 16 0.363 6.00 2.674 表 7 综合评分极差分析
Table 7. Range analysis of overall score
影响因素 k1 k2 k3 k4 极差 R A 磨头目数 G 4.757 2.740 1.914 1.323 3.434 B 磨抛力 F 2.015 2.737 3.605 2.589 1.590 C 进给速度 v 2.856 3.094 3.330 2.528 0.802 D 主轴转速 n 1.960 2.478 2.986 3.521 1.561 -
[1] 徐锋, 章武林, 杜永强, 等. EA4T车轴不同加工工艺表面完整性分析 [J]. 表面技术,2017,46(12):277-282. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.043XU Feng, ZHANG Wulin, DU Yongqiang, et al. Analysis of surface integrity of EA4T axle being processed in different technologies [J]. Surface Technology,2017,46(12):277-282. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.043 [2] WANG F, LIU Z, XUE P C, et al. High-speed railway development and its impact on urban economy and population: A case study of nine provinces along the Yellow River, China [J]. Sustainable Cities and Society,2022,87:104172. doi: 10.1016/j.scs.2022.104172 [3] 赵文杰. 高速列车车轴钢EA4T循环本构模型及有限元实现[D]. 长沙: 湖南大学, 2021.ZHAO Wenjie. Cyclic constitutive model of high-speed railway train axle steel EA4T and finite element implementation[D]. Changsha: Hunan University, 2021. [4] LI H, ZHANG J W, WU S C, et al. Corrosion fatigue mechanism and life prediction of railway axle EA4T steel exposed to artificial rainwater [J]. Engineering Failure Analysis,2022,138:106319. doi: 10.1016/j.engfailanal.2022.106319 [5] 靳智超, 梁红琴, 卢纯, 等. 考虑车轮多边形的动车组车轴疲劳寿命预测 [J]. 中国机械工程,2024,35(7):1299-1307. doi: 10.3969/j.issn.1004-132X.2024.07.018JIN Zhichao, LIANG Hongqin, LU Chun, et al. Fatigue life prediction of multiple unit axle considering wheel polygon [J]. China Mechanical Engineering,2024,35(7):1299-1307. doi: 10.3969/j.issn.1004-132X.2024.07.018 [6] UNAL O, MALEKI E, KARADEMIR I, et al. Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel [J]. International Journal of Fatigue,2022,155:106613. doi: 10.1016/j.ijfatigue.2021.106613 [7] ZHU Y F, YANG M K, ZHOU X G. Research on simulation and optimization of production line of train wagon axle [C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). Beijing, China. IEEE, 2020: 542-546. [8] 李行, 张继旺, 徐俊生, 等. 缺陷对EA4T车轴钢疲劳性能的影响 [J]. 西南交通大学学报,2021,56(3):627-633. doi: 10.3969/j.issn.0258-2724.20190373LI Hang, ZHANG Jiwang, XU Junsheng, et al. Effect of defect on fatigue property of EA4T axle steel [J]. Journal of Southwest Jiaotong University,2021,56(3):627-633. doi: 10.3969/j.issn.0258-2724.20190373 [9] BUERKLE A, EATON W, AL-YACOUB A, et al. Towards industrial robots as a service (IRaaS): Flexibility, usability, safety and business models [J]. Robotics and Computer-Integrated Manufacturing,2023,81:102484. doi: 10.1016/j.rcim.2022.102484 [10] LORANG X, CHEYNET Y, FERAUD P, et al. A study on lifetime of a railway axle subjected to grinding [J]. Procedia Engineering,2018,213:255-261. doi: 10.1016/j.proeng.2018.02.026 [11] 冯中立, 蒲磊, 杨文贤, 等. 表面加工工艺对动车组车轴表面性能的影响 [J]. 工具技术,2023,57(7):105-111. doi: 10.3969/j.issn.1000-7008.2023.07.019FENG Zhongli, PU Lei, YANG Wenxian, et al. Influence of surface processing technology on surface performance of EMU axle [J]. Tool Engineering,2023,57(7):105-111. doi: 10.3969/j.issn.1000-7008.2023.07.019 [12] BULZAK T, PATER Z, TOMCZAK J, et al. Study of CNC skew rolling of hollow rail axles with a mandrel [J]. Archives of Civil and Mechanical Engineering,2024,24(3):145. doi: 10.1007/s43452-024-00954-1 [13] 韩杰. 动车轴箱体柔性打磨技术研究 [J]. 机车车辆工艺,2022(3):19-22. doi: 10.14032/j.issn.1007-6034.2022.03.007HAN Jie. Research of automatic flexible grinding techniques for axle box bodies on EMUs [J]. Locomotive & Rolling Stock Technology,2022(3):19-22. doi: 10.14032/j.issn.1007-6034.2022.03.007 [14] 山荣成, 王睿, 蔡卫星, 等. 不同加工工艺对EA4T车轴表面性能的影响 [J]. 工具技术,2018,52(10):79-83. doi: 10.3969/j.issn.1000-7008.2018.10.031SHAN Rongcheng, WANG Rui, CAI Weixing, et al. Influence of different processing technology on surface performance of EA4T axle [J]. Tool Engineering,2018,52(10):79-83. doi: 10.3969/j.issn.1000-7008.2018.10.031 [15] 孙国艳, 贾兴民, 程妍. 磨削工艺对列车车轴表面粗糙度及加工应力的影响 [J]. 金属加工(冷加工),2024(6):28-32. doi: 10.3969/j.issn.1674-1641.2024.06.009SUN Guoyan, JIA Xingmin, CHENG Yan. The influence of grinding technology on the surface roughness and machining stress of train axles [J]. Metal Working(Metal Cutting),2024(6):28-32. doi: 10.3969/j.issn.1674-1641.2024.06.009 [16] 杨柳, 王建彬, 徐慧敏, 等. 基于正交试验的工业纯钛研磨工艺研究 [J]. 现代制造工程,2021(8):95-100. doi: 10.16731/j.cnki.1671-3133.2021.08.014YANG Liu, WANG Jianbin, XU Huimin, et al. Research on grinding process of commercial pure titanium based on orthogonal experiment [J]. Modern Manufacturing Engineering,2021(8):95-100. doi: 10.16731/j.cnki.1671-3133.2021.08.014 [17] 邓伟, 宋仲模, 雷基林, 等. 基于熵值法的铝合金缸体低压铸造工艺多目标优化 [J]. 铸造,2024,73(6):753-761. doi: 10.3969/j.issn.1001-4977.2024.06.004DENG Wei, SONG Zhongmo, LEI Jilin, et al. Multi-objective optimization of low-pressure casting process of aluminum alloy cylinder block based on entropy method [J]. Foundry,2024,73(6):753-761. doi: 10.3969/j.issn.1001-4977.2024.06.004 -