CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EA4T车轴机器人磨抛工艺优化与轨迹规划研究

张峰 冯中立 徐锋 张德明 曾祥瑞 马建伟 张石磊

张峰, 冯中立, 徐锋, 张德明, 曾祥瑞, 马建伟, 张石磊. EA4T车轴机器人磨抛工艺优化与轨迹规划研究[J]. 金刚石与磨料磨具工程, 2025, 45(2): 266-273. doi: 10.13394/j.cnki.jgszz.2024.0187
引用本文: 张峰, 冯中立, 徐锋, 张德明, 曾祥瑞, 马建伟, 张石磊. EA4T车轴机器人磨抛工艺优化与轨迹规划研究[J]. 金刚石与磨料磨具工程, 2025, 45(2): 266-273. doi: 10.13394/j.cnki.jgszz.2024.0187
ZHANG Feng, FENG Zhongli, XU Feng, ZHANG Deming, ZENG Xiangrui, MA Jianwei, ZHANG Shilei. Research on process optimization and trajectory planning of EA4T axle robot grinding[J]. Diamond & Abrasives Engineering, 2025, 45(2): 266-273. doi: 10.13394/j.cnki.jgszz.2024.0187
Citation: ZHANG Feng, FENG Zhongli, XU Feng, ZHANG Deming, ZENG Xiangrui, MA Jianwei, ZHANG Shilei. Research on process optimization and trajectory planning of EA4T axle robot grinding[J]. Diamond & Abrasives Engineering, 2025, 45(2): 266-273. doi: 10.13394/j.cnki.jgszz.2024.0187

EA4T车轴机器人磨抛工艺优化与轨迹规划研究

doi: 10.13394/j.cnki.jgszz.2024.0187
详细信息
    作者简介:

    通信作者:张峰,1977年生,学士学位,正高级工程师,主要从事轨道车辆转向架工艺工作。E-mail: zhangfeng@cqsf.com

  • 中图分类号: TG580.6

Research on process optimization and trajectory planning of EA4T axle robot grinding

  • 摘要: 为突破动车组EA4T车轴人工磨抛时作业强度大、加工质量不稳定等困境,采用工业机器人智能磨抛系统研究EA4T钢试件的磨抛工艺,并提出EA4T车轴机器人磨抛轨迹离线编程方法。首先对EA4T钢试件进行机器人磨抛正交试验;然后采用熵值法对试验结果进行多目标工艺优化,得出最优磨抛工艺参数组合;最后采用离线编程方法规划EA4T车轴轴肩部位的磨抛轨迹,并将生成的加工程序导入机器人示教器进行磨抛轨迹试验验证。研究表明,优化后的磨抛工艺参数组合为磨头目数400#(筛网孔径为0.038 mm)、磨抛力15 N、进给速度50 mm/s、主轴转速750 r/min。采用该参数组合磨抛后,EA4T钢试件的表面粗糙度Ra为0.338 μm、材料去除深度h为1.67 μm,均符合指标要求。采用最优磨抛工艺参数配合机器人磨抛轨迹规划方法,能够快速精准完成EA4T车轴轴肩部位的磨抛作业,具有一定的工程应用价值。

     

  • 图  1  EA4T车轴与EA4T钢平板试件

    Figure  1.  EA4T axle and EA4T steel plate specimen

    图  2  机器人智能磨抛系统

    Figure  2.  Robot intelligent grinding and polishing system

    图  3  EA4T钢磨抛质量检测方法

    Figure  3.  Grinding and polishing quality test method of EA4T steel

    图  4  EA4T车轴机器人磨抛轨迹规划流程

    Figure  4.  Robot grinding and polishing trajectory planning process of EA4T axle

    图  5  EA4T车轴机器人磨抛轨迹仿真

    Figure  5.  Robot grinding and polishing trajectory simulation of EA4T axle

    图  6  EA4T车轴机器人磨抛轨迹试验

    Figure  6.  Robot grinding and polishing trajectory experiment of EA4T axle

    表  1  EA4T钢中各元素质量分数

    Table  1.   Mass fraction of each element in EA4T steel

    元素 质量分数 w / % 元素 质量分数 w / %
    Mn 0.50~0.80 C 0.22~0.29
    Cr 0.90~1.20 Si 0.15~0.40
    Mo 0.15~0.30 Cu ≤0.30
    Ni ≤0.30 V ≤0.06
    P ≤0.020 S ≤0.015
    Fe 余量
    下载: 导出CSV

    表  2  EA4T钢磨抛正交试验次序与参数

    Table  2.   Grinding and polishing orthogonal experiment sequences and parameters of EA4T steel

    序号 A
    磨头目数
    G
    B
    磨抛力
    F / N
    C
    进给速度
    v / (mm·s−1)
    D
    主轴转速
    n / (r·min−1)
    1 120# 15 20 750
    2 240# 15 30 1500
    3 320# 15 40 2250
    4 400# 15 50 3000
    5 320# 20 30 750
    6 400# 20 20 1500
    7 120# 20 50 2250
    8 240# 20 40 3000
    9 400# 25 40 750
    10 320# 25 50 1500
    11 240# 25 20 2250
    12 120# 25 30 3000
    13 320# 30 50 750
    14 120# 30 40 1500
    15 400# 30 30 2250
    16 320# 30 20 3000
    下载: 导出CSV

    表  3  EA4T钢磨抛正交试验结果

    Table  3.   Orthogonal experiment results of EA4T steel grinding and polishing

    序号 表面粗糙度
    Ra / μm
    材料去除深度
    h / μm
    误差列
    1 0.931 5.67 1
    2 0.709 4.67 2
    3 0.532 2.33 3
    4 0.598 3.00 4
    5 0.673 3.67 4
    6 0.313 2.67 3
    7 0.725 10.67 2
    8 0.627 6.33 1
    9 0.561 2.00 2
    10 0.753 3.33 1
    11 0.376 10.67 4
    12 0.978 15.33 3
    13 0.695 3.67 3
    14 0.659 10.00 4
    15 0.309 2.67 1
    16 0.363 6.00 2
    下载: 导出CSV

    表  4  表面粗糙度方差分析

    Table  4.   Variance analysis results of surface roughness

    影响因素 平方和 均方 F 显著性
    A 磨头目数 G 0.086 0.029 5.456 0.099
    B 磨抛力 F 0.294 0.098 18.760 0.019
    C 进给速度 v 0.110 0.037 7.013 0.072
    D 主轴转速 n 0.094 0.031 5.965 0.088
    下载: 导出CSV

    表  5  材料去除深度方差分析

    Table  5.   Variance analysis results of material removal depth

    影响因素 平方和 均方 F 显著性
    A 磨头目数 G 30.888 10.296 2.756 0.214
    B 磨抛力 F 143.258 47.753 12.781 0.032
    C 进给速度 v 34.764 11.582 3.100 0.189
    D 主轴转速 n 6.469 2.165 0.580 0.667
    下载: 导出CSV

    表  6  试验综合评分

    Table  6.   Experiment overall score

    序号 表面粗糙度 Ra / μm 材料去除深度 h / μm 综合评分 S
    1 0.931 5.67 2.873
    2 0.709 4.67 2.333
    3 0.532 2.33 1.269
    4 0.598 3.00 1.583
    5 0.673 3.67 1.902
    6 0.313 2.67 1.279
    7 0.725 10.67 4.802
    8 0.627 6.33 2.965
    9 0.561 2.00 1.151
    10 0.753 3.33 1.810
    11 0.376 10.67 4.597
    12 0.978 15.33 6.862
    13 0.695 3.67 1.915
    14 0.659 10.00 4.489
    15 0.309 2.67 1.277
    16 0.363 6.00 2.674
    下载: 导出CSV

    表  7  综合评分极差分析

    Table  7.   Range analysis of overall score

    影响因素 k1 k2 k3 k4 极差 R
    A 磨头目数 G 4.757 2.740 1.914 1.323 3.434
    B 磨抛力 F 2.015 2.737 3.605 2.589 1.590
    C 进给速度 v 2.856 3.094 3.330 2.528 0.802
    D 主轴转速 n 1.960 2.478 2.986 3.521 1.561
    下载: 导出CSV
  • [1] 徐锋, 章武林, 杜永强, 等. EA4T车轴不同加工工艺表面完整性分析 [J]. 表面技术,2017,46(12):277-282. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.043

    XU Feng, ZHANG Wulin, DU Yongqiang, et al. Analysis of surface integrity of EA4T axle being processed in different technologies [J]. Surface Technology,2017,46(12):277-282. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.043
    [2] WANG F, LIU Z, XUE P C, et al. High-speed railway development and its impact on urban economy and population: A case study of nine provinces along the Yellow River, China [J]. Sustainable Cities and Society,2022,87:104172. doi: 10.1016/j.scs.2022.104172
    [3] 赵文杰. 高速列车车轴钢EA4T循环本构模型及有限元实现[D]. 长沙: 湖南大学, 2021.

    ZHAO Wenjie. Cyclic constitutive model of high-speed railway train axle steel EA4T and finite element implementation[D]. Changsha: Hunan University, 2021.
    [4] LI H, ZHANG J W, WU S C, et al. Corrosion fatigue mechanism and life prediction of railway axle EA4T steel exposed to artificial rainwater [J]. Engineering Failure Analysis,2022,138:106319. doi: 10.1016/j.engfailanal.2022.106319
    [5] 靳智超, 梁红琴, 卢纯, 等. 考虑车轮多边形的动车组车轴疲劳寿命预测 [J]. 中国机械工程,2024,35(7):1299-1307. doi: 10.3969/j.issn.1004-132X.2024.07.018

    JIN Zhichao, LIANG Hongqin, LU Chun, et al. Fatigue life prediction of multiple unit axle considering wheel polygon [J]. China Mechanical Engineering,2024,35(7):1299-1307. doi: 10.3969/j.issn.1004-132X.2024.07.018
    [6] UNAL O, MALEKI E, KARADEMIR I, et al. Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel [J]. International Journal of Fatigue,2022,155:106613. doi: 10.1016/j.ijfatigue.2021.106613
    [7] ZHU Y F, YANG M K, ZHOU X G. Research on simulation and optimization of production line of train wagon axle [C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). Beijing, China. IEEE, 2020: 542-546.
    [8] 李行, 张继旺, 徐俊生, 等. 缺陷对EA4T车轴钢疲劳性能的影响 [J]. 西南交通大学学报,2021,56(3):627-633. doi: 10.3969/j.issn.0258-2724.20190373

    LI Hang, ZHANG Jiwang, XU Junsheng, et al. Effect of defect on fatigue property of EA4T axle steel [J]. Journal of Southwest Jiaotong University,2021,56(3):627-633. doi: 10.3969/j.issn.0258-2724.20190373
    [9] BUERKLE A, EATON W, AL-YACOUB A, et al. Towards industrial robots as a service (IRaaS): Flexibility, usability, safety and business models [J]. Robotics and Computer-Integrated Manufacturing,2023,81:102484. doi: 10.1016/j.rcim.2022.102484
    [10] LORANG X, CHEYNET Y, FERAUD P, et al. A study on lifetime of a railway axle subjected to grinding [J]. Procedia Engineering,2018,213:255-261. doi: 10.1016/j.proeng.2018.02.026
    [11] 冯中立, 蒲磊, 杨文贤, 等. 表面加工工艺对动车组车轴表面性能的影响 [J]. 工具技术,2023,57(7):105-111. doi: 10.3969/j.issn.1000-7008.2023.07.019

    FENG Zhongli, PU Lei, YANG Wenxian, et al. Influence of surface processing technology on surface performance of EMU axle [J]. Tool Engineering,2023,57(7):105-111. doi: 10.3969/j.issn.1000-7008.2023.07.019
    [12] BULZAK T, PATER Z, TOMCZAK J, et al. Study of CNC skew rolling of hollow rail axles with a mandrel [J]. Archives of Civil and Mechanical Engineering,2024,24(3):145. doi: 10.1007/s43452-024-00954-1
    [13] 韩杰. 动车轴箱体柔性打磨技术研究 [J]. 机车车辆工艺,2022(3):19-22. doi: 10.14032/j.issn.1007-6034.2022.03.007

    HAN Jie. Research of automatic flexible grinding techniques for axle box bodies on EMUs [J]. Locomotive & Rolling Stock Technology,2022(3):19-22. doi: 10.14032/j.issn.1007-6034.2022.03.007
    [14] 山荣成, 王睿, 蔡卫星, 等. 不同加工工艺对EA4T车轴表面性能的影响 [J]. 工具技术,2018,52(10):79-83. doi: 10.3969/j.issn.1000-7008.2018.10.031

    SHAN Rongcheng, WANG Rui, CAI Weixing, et al. Influence of different processing technology on surface performance of EA4T axle [J]. Tool Engineering,2018,52(10):79-83. doi: 10.3969/j.issn.1000-7008.2018.10.031
    [15] 孙国艳, 贾兴民, 程妍. 磨削工艺对列车车轴表面粗糙度及加工应力的影响 [J]. 金属加工(冷加工),2024(6):28-32. doi: 10.3969/j.issn.1674-1641.2024.06.009

    SUN Guoyan, JIA Xingmin, CHENG Yan. The influence of grinding technology on the surface roughness and machining stress of train axles [J]. Metal Working(Metal Cutting),2024(6):28-32. doi: 10.3969/j.issn.1674-1641.2024.06.009
    [16] 杨柳, 王建彬, 徐慧敏, 等. 基于正交试验的工业纯钛研磨工艺研究 [J]. 现代制造工程,2021(8):95-100. doi: 10.16731/j.cnki.1671-3133.2021.08.014

    YANG Liu, WANG Jianbin, XU Huimin, et al. Research on grinding process of commercial pure titanium based on orthogonal experiment [J]. Modern Manufacturing Engineering,2021(8):95-100. doi: 10.16731/j.cnki.1671-3133.2021.08.014
    [17] 邓伟, 宋仲模, 雷基林, 等. 基于熵值法的铝合金缸体低压铸造工艺多目标优化 [J]. 铸造,2024,73(6):753-761. doi: 10.3969/j.issn.1001-4977.2024.06.004

    DENG Wei, SONG Zhongmo, LEI Jilin, et al. Multi-objective optimization of low-pressure casting process of aluminum alloy cylinder block based on entropy method [J]. Foundry,2024,73(6):753-761. doi: 10.3969/j.issn.1001-4977.2024.06.004
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  50
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-30
  • 修回日期:  2025-01-18
  • 录用日期:  2025-02-14
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回