Effect of different granulation processes and powder particle sizes on uniformity of diamond distribution in the mixed powder
-
摘要: 为研究不同造粒工艺和粉末粒径对混合粉料中金刚石分布均匀性的影响,以同一种预混合粉料为原料,分别通过圆盘造粒、冷压破碎造粒、扩散破碎造粒3种方法进行造粒,并对3种造粒工艺的粉末通过筛分方法,获得各工艺下的180~380 μm、120~180 μm及75~120 μm粒径的试样,研究不同造粒工艺和不同粉末粒径对混合粉料中250~380 μm粒径金刚石分布的影响。结果表明:圆盘造粒获得的是仿球形粉末,冷压破碎造粒获得的是不规则形状粉末且其表面可分辨出原始颗粒形貌,扩散破碎造粒获得的是不规则复杂形状粉末;在同一造粒工艺条件下,均为180~380 μm混合粉料试样中金刚石的分布均匀性最好;在同一粒径区间条件下,均为扩散破碎造粒的混合粉料试样中金刚石的分布均匀性最好。Abstract:
Objectives With the rapid development of diamond tool quality and varieties, the requirements for diamond tool properties are increasingly rigorous, and the uniformity of diamond distribution in diamond tools is an important index affecting its performance. The imperfect granulation process of mixed powder containing diamond is one of the reasons for the uneven distribution of diamond in diamond tools. By studying the secondary particle morphology obtained by different granulation processes and the influence of mixed powder with different particle sizes on the uniform distribution of diamond, the distribution uniformity of diamond in the mixed powder is improved, so as to improve the performance of diamond tools. Methods Using the same premixed powder as raw material, three different granulation processes—disk granulation, cold press crushing granulation, and diffusion crushing granulation—were used to carry out experiments. The powders of the three granulation processes were sieved using stainless steel standard sieves, and the particle size samples of 180 to 380 μm, 120 to 180 μm, and 75 to 120 μm were obtained under the same process. The effects of different granulation processes and different powder particle sizes on the distribution of 250 to 380 μm diamond in the same mixed powder were studied. At the same time, the nine-point sampling method was used to sample. The actual numbers of diamond particles in each sample were counted manually, the actual numbers of particles were compared with the calculated theoretical numbers of diamond particles and the deviation values were obtained. The averages and the ranges of the deviation values were used to determine the uniformity of diamond distribution in the mixed powder containing diamond. Results (1) From the morphology of the powder particles, it can be seen that the circular granulation produces spherical-shaped powder, the cold press crushing granulation produces irregularly shaped powder with distinguishable original particle morphology on its surface, and the diffusion crushing granulation produces irregularly complex shaped powder. (2) The loose packing ratio of powder produced by cold press crushing granulation is the highest, while the loose packing ratio of powder produced by disk granulation and diffusion crushing granulation is not significantly different. Under the same granulation process, the loose packing ratio of large particles is smaller, but as the particle size decreases, the influence of particle size becomes smaller. The flow rate of disk granulation is the highest and decreases with the decrease of particle size, but the flow rate of cold press crushing granulation is the lowest and the change is not significant, while the flow rate of diffusion crushing granulation is in the middle. (3) Under the same granulation process conditions, the distribution uniformity of diamond in mixed powder samples of 180 to 380 μm with three different granulation processes is the best. Under the same particle size range conditions, the distribution uniformity of diamond is the best in the mixed powder samples which are all diffusion crushing granulation. Compared with the diamond distribution in the different particle size mixed powder of the three methods of granulation process, the distribution of diamond controlled in the particle size interval of 180 to 380 μm by diffusion granulation process is the best. Conclusions The influences of the same kind of premixed powder on the distribution of diamond in the mixed powders under different granulation process conditions and different particle sizes is studied, and the following conclusions are drawn: (1) The particle morphology of different granulation processes is different. The powder particle morphology of disk granulation is a pseudo-spherical shape like "potato", the powder particle morphology of cold press crushing granulation is irregular shape and the surface can distinguish the original particle morphology, and the powder particle morphology of diffusion crushing granulation is complex irregular shape. (2) Under the same granulation process conditions, the distribution uniformity of diamond in the mixed powder with particle size of 180 to 380 μm (original particle size of 250 to 380 μm) is obviously better than that of the mixed powders with particle size of 120 to 180 μm and 75 to 120 μm. (3) Under the condition of the same particle size range, the distribution uniformity of diamond in the mixed powder under the diffusion crushing granulation is obviously better than that under the disk granulation process and the cold press crushing granulation process. -
Key words:
- granulating process /
- apparent density /
- flowability /
- morphology /
- particle size /
- diamond distribution
-
表 1 实验方案
Table 1. Plans of experiment
造粒工艺 粒径 d / μm 180~380 120~180 75~120 圆盘造粒 A1 A2 A3 冷压破碎造粒 B1 B2 B3 扩散破碎造粒 C1 C2 C3 表 2 圆盘制粒工艺混合粉料中金刚石分布检测数据
Table 2. Diamond distribution detection data of mixed powder through disk granulation
上层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %A11 1.181 386 388 −0.52 0.896 324 294 10.20 0.902 265 296 −10.47 0.973 305 320 −4.69 0.981 361 322 12.11 0.956 320 314 1.91 1.007 379 331 14.50 0.921 298 303 −1.65 1.177 339 387 −12.40 A22 1.020 280 335 −16.42 1.125 343 370 −7.30 0.999 371 328 13.11 0.890 236 292 −19.18 1.003 288 329 −12.46 1.084 304 356 −14.61 0.901 290 296 −2.03 1.070 268 351 −23.65 1.037 409 341 19.94 A33 1.202 288 395 −27.09 1.108 270 364 −25.82 1.149 432 377 14.59 0.950 321 312 2.88 0.992 299 326 −8.28 1.061 288 349 −17.48 1.074 252 353 −28.61 1.206 409 396 3.28 1.096 371 360 3.06 中层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %A11 0.890 248 292 −15.07 1.153 429 379 13.19 1.126 324 370 −12.43 0.944 303 310 −2.26 1.056 388 347 11.82 1.124 357 369 −3.25 1.023 295 336 −12.20 0.928 256 305 −16.07 0.864 302 284 6.34 中层 A22 0.942 361 309 16.83 0.975 243 320 −24.06 1.129 319 371 −14.02 0.915 267 301 −11.30 1.076 275 353 −22.10 0.955 258 314 −17.83 1.172 352 385 −8.57 1.112 296 365 −18.90 1.107 281 364 −22.80 A33 1.210 376 397 −5.29 1.162 385 382 0.79 0.865 210 284 −26.06 0.908 212 298 −28.86 1.153 295 379 −22.16 0.893 201 293 −31.40 1.137 338 373 −9.38 1.015 245 333 −26.43 1.142 307 375 −18.13 下层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %A11 0.879 241 289 −16.61 1.135 373 373 0.00 1.162 344 382 −9.95 1.167 450 383 17.49 1.119 330 368 −10.33 0.996 323 327 −1.22 1.146 350 376 −6.91 0.917 277 301 −7.97 0.908 330 298 10.74 A22 1.052 282 346 −18.50 1.095 337 360 −6.39 1.094 421 359 17.27 0.968 255 318 −19.81 0.961 279 316 −11.71 1.143 397 375 5.87 1.095 379 360 5.28 0.971 243 319 −23.82 0.965 368 317 16.09 A33 1.198 316 394 −19.80 0.992 304 326 −6.75 1.122 355 369 −3.79 1.043 248 343 −27.70 0.869 370 285 29.82 0.871 194 286 −32.17 0.957 318 314 1.27 1.062 371 349 6.30 1.185 363 389 −6.68 表 3 冷压破碎制粒工艺混合粉料中金刚石分布检测数据
Table 3. Diamond distribution detection data of mixed powder through cold crushing granulation
上层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %B11 1.102 346 362 −4.42 1.101 354 362 −2.21 1.164 390 382 2.09 1.144 389 376 3.46 0.857 258 282 −8.51 0.855 277 281 −1.42 0.882 259 290 −10.69 0.992 315 326 −3.37 1.064 358 350 2.29 B22 0.956 262 314 −16.56 1.065 390 350 11.43 1.206 396 396 0.00 0.907 313 298 5.03 1.061 321 349 −8.02 0.982 320 323 −0.93 1.033 294 339 −13.27 0.912 358 300 19.33 0.904 275 297 −7.41 B33 1.090 386 358 7.82 0.968 368 318 15.72 1.008 319 331 −3.63 1.169 461 384 20.05 1.191 402 391 2.81 1.157 460 380 21.05 0.858 362 282 28.37 1.100 361 361 0.00 0.910 383 299 28.09 中层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %B11 0.988 347 325 6.77 1.165 395 383 3.13 1.114 323 366 −11.75 1.005 362 330 9.70 0.916 300 301 −0.33 1.070 373 351 6.27 0.877 329 288 14.24 0.901 292 296 −1.35 0.941 272 309 −11.97 B22 0.853 314 280 12.14 1.122 365 369 −1.08 1.019 370 335 10.45 1.176 396 386 2.59 0.855 248 281 −11.74 1.133 343 372 −7.80 0.882 266 290 −8.28 1.056 410 347 18.16 1.044 284 343 −17.20 中层 B33 0.960 262 315 −16.83 0.896 374 294 27.21 0.899 342 295 15.93 1.137 446 373 19.57 0.874 270 287 −5.92 1.026 300 337 −10.98 0.987 374 324 15.43 0.873 284 287 −1.05 0.923 368 303 21.45 下层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %B11 1.140 415 374 10.96 0.865 258 284 −9.15 0.960 287 315 −8.89 1.103 366 362 1.10 1.131 352 372 −5.38 1.197 392 393 −0.25 0.957 302 314 −3.82 0.903 330 297 11.11 1.102 383 362 5.80 B22 1.125 347 370 −6.22 1.148 379 377 0.53 0.908 274 298 −8.05 1.090 295 358 −17.60 0.972 289 319 −9.40 0.911 312 299 4.35 0.860 318 282 12.77 0.864 250 284 −11.97 1.018 280 334 −16.17 B33 0.917 261 301 −13.29 1.204 290 395 −26.58 1.008 340 331 2.72 1.141 423 375 12.80 0.995 362 327 10.70 1.029 376 338 11.24 0.867 338 285 18.60 1.022 388 336 15.48 0.962 393 316 24.37 表 4 扩散破碎制粒工艺混合粉料中金刚石分布检测数据
Table 4. Diamond distribution detection data of mixed powder through diffusion crushing granulation
上层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %C11 1.175 412 386 6.74 0.897 286 295 −3.05 1.080 360 355 1.41 0.876 314 288 9.03 0.904 289 297 −2.69 1.197 373 393 −5.09 0.927 312 305 2.30 1.001 316 329 −3.95 0.982 348 323 7.74 C22 0.862 286 283 1.06 1.096 381 360 5.83 0.960 288 315 −8.57 0.924 289 304 −4.93 1.002 303 329 −7.90 0.856 247 281 −12.10 0.976 334 321 4.05 0.863 259 283 −8.48 1.193 404 392 3.06 C33 0.919 324 302 7.28 1.191 468 391 19.69 0.967 267 318 −16.04 0.875 277 287 −3.48 0.963 309 316 −2.22 0.894 306 294 4.08 1.048 400 344 16.28 1.165 391 383 2.09 0.960 379 315 20.32 中层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %C11 1.024 354 336 5.36 1.140 397 374 6.15 0.891 271 293 −7.51 0.913 288 300 −4.00 1.060 341 348 −2.01 0.925 300 304 −1.32 1.056 370 347 6.63 0.853 280 280 0.00 0.990 306 325 −5.85 C22 1.172 351 385 −8.83 0.887 288 291 −1.03 1.040 352 342 2.92 1.046 324 344 −5.81 0.923 334 303 10.23 1.207 422 396 6.57 1.070 375 351 6.84 0.923 281 303 −7.26 1.175 416 386 7.77 中层 C33 1.185 359 389 −7.71 1.074 400 353 13.31 0.944 347 310 11.94 0.910 351 299 17.39 0.997 311 327 −4.89 0.883 328 290 13.10 1.047 418 344 21.51 0.988 326 325 0.31 0.873 254 287 −11.50 下层 粉料
编号粉料质量
m / g实际金刚石
颗粒数 n1理论金刚石
颗粒数 n2理论偏差
δ / %C11 0.871 264 286 −7.69 1.065 339 350 −3.14 0.969 293 318 −7.86 1.034 327 340 −3.82 0.853 277 280 −1.07 1.000 333 328 1.52 0.936 335 307 9.12 1.144 348 376 −7.45 0.940 332 309 7.44 C22 0.949 338 312 8.33 0.882 258 290 −11.03 1.039 374 341 9.68 0.859 312 282 10.64 0.942 328 309 6.15 1.072 353 352 0.28 1.114 341 366 −6.83 1.127 349 370 −5.68 1.167 381 383 −0.52 C33 0.959 297 315 −5.71 1.061 417 349 19.48 0.858 329 282 16.67 0.983 305 323 −5.57 1.037 417 341 22.29 0.862 320 283 13.07 1.051 361 345 4.64 1.084 411 356 15.45 0.936 302 307 −1.63 -
[1] 卢寿慈. 粉体加工技术 [M]. 北京: 中国轻工业出版社, 1999.LU Shouci. Powder processing technology [M]. Beijing: China Light Industry Press, 1999. [2] 王明智. 金刚石工具制造技术的发展与热点问题 [J]. 超硬材料工程,2011,23(5):37-41. doi: 10.3969/j.issn.1673-1433.2011.05.010WANG Mingzhi. Development of diamond tools manufacturing technology & relevant hot issues [J]. Superhard Material Engineering,2011,23(5):37-41. doi: 10.3969/j.issn.1673-1433.2011.05.010 [3] 章兼植. 当前金刚石工具制作中的几个热点技术 [J]. 珠宝科技,2002,14(2):44-47. doi: 10.3969/j.issn.1673-1433.2002.02.014ZHANG Jianzhi. Several highly concerned technologie in diamond tools at present [J]. Jewelry Science and Technology,2002,14(2):44-47. doi: 10.3969/j.issn.1673-1433.2002.02.014 [4] BURCKHARDT S. New technique for granulating diamond and metal powders [J]. Metal Powder Report,1998,53(4):28-29. [5] 石云霞, 肖锋, 朱艺添, 等. 制粒工艺对金刚石工具胎体性能的影响: 2012全国超硬材料技术发展论坛 [C]. 郑州: 2012.SHI Yunxia, XIAO Feng, ZHU Yitian, et al. Effect of granulation process on properties of diamond tool matrix: BBS on 2012 national superhard materials technology development [C]. Zhengzhou: 2012. [6] 李运海, 谢志刚. 制粒颗粒对容积式自动冷压的影响研究 [J]. 超硬材料工程,2016, 28(3):11-17. doi: 10.3969/j.issn.1673-1433.2016.03.003LI Yunhai, XIE Zhigang. Research on the effect of granulating particle on volumetric automatic cold pressing [J]. Superhard Material Engineering,2016, 28(3):11-17. doi: 10.3969/j.issn.1673-1433.2016.03.003 [7] 孟凡爱, 刘英凯, 王建强. 粉末制粒工艺在金刚石工具制造中的应用研究 [J]. 粉末冶金技术,2010,28(3):188-191.MENG Fanai, LIU Yingkai, WANG Jianqiang. Application study on granulation technology in diamond tools manufacture [J]. Powder Metallurgy Technology,2010,28(3):188-191. [8] 雷晓旭, 秦海清, 卢安军, 等. 制粒剂对无压烧结金刚石工具胎体性能的影响 [J]. 超硬材料工程,2014,26(2):31-34. doi: 10.3969/j.issn.1673-1433.2014.02.009LEI Xiaoxu, QIN Haiqing, LU Anjun, et al. Influence of granulating agent on the properties of pressureless sintering diamond tool matrix [J]. Superhard Material Engineering,2014,26(2):31-34. doi: 10.3969/j.issn.1673-1433.2014.02.009 [9] 冯力, 姜威, 李文生, 等. 混粉工艺对Cu基金刚石锯片胎体组织与硬度的影响 [J]. 粉末冶金材料科学与工程,2015,20(5):795-801. doi: 10.3969/j.issn.1673-0224.2015.05.021FENG Li, JIANG Wei, LI Wensheng, et al. Effect of mixing method microstructure and hardness of Cu based diamond sawing matrixes [J]. Materials Science and Engineering of Powder Metallurgy,2015,20(5):795-801. doi: 10.3969/j.issn.1673-0224.2015.05.021 [10] 李科. 高能球磨合金化粉末对金刚石工具胎体性能影响的研究 [D]. 泉州: 华侨大学, 2014.LI Ke. Research of high power ball mill alloying powder on the performance of diamond tools matrix [D]. Quanzhou: Huaqiao University, 2014. [11] 储志强, 郭学益, 张立, 等. 超高压水雾化工艺参数对金刚石胎体用预合金粉末粒度与形貌的影响 [J]. 粉末冶金材料科学与工程,2015,20(5):808-814. doi: 10.3969/j.issn.1673-0224.2015.05.023CHU Zhiqiang, GUO Xueyi, ZHANG Li, et al. Effect of super high pressure water atomization parameters on diameter and micrograph of diamond matrix prealloy powders [J]. Materials Science and Engineering of Powder Metallurgy,2015,20(5):808-814. doi: 10.3969/j.issn.1673-0224.2015.05.023 [12] 谢志刚, 刘心宇, 秦海青, 等. 金刚石制品用FeCoCu胎体的烧结与力学性能研究 [J]. 中南大学学报(自然科学版),2010,41(6):2179-2183.XIE Zhigang, LIU Xinyu, QIN Haiqing, et al. Sintering and mechanical properties of FeCoCu fetal body applied for diamond tools [J]. Journal of Central South University (Science and Technology),2010,41(6):2179-2183. [13] 郑汉书, 姜荣超, 魏洪涛, 等. 锯切花岗岩用金刚石有序排列锯片构研制 [J]. 石材,2006(11):11-14. doi: 10.3969/j.issn.1005-3352.2006.11.006ZHEN Hanshu, JIANG Rongchao, WEI Hongtao, et al. Research and manufacture of diamond array pattern saw blade for cutting granite [J]. Stone,2006(11):11-14. doi: 10.3969/j.issn.1005-3352.2006.11.006 [14] 牛明远, 潘秉锁, 田永常. 以锐角比率为测度的金刚石分布均匀性定量评价 [J]. 金刚石与磨料磨具工程,2009(5):28-31,40. doi: 10.3969/j.issn.1006-852X.2009.05.006NIU Mingyuan, PAN Bingsuo, TIAN Yongchang. Quantitative measurement of the uniformity of diamond distribution by acute angle ratio method [J]. Diamond & Abrasives Engineering,2009(5):28-31,40. doi: 10.3969/j.issn.1006-852X.2009.05.006 [15] 丁天然. 金刚石工具用预合金粉末的制备及其应用 [D]. 北京: 机械科学研究总院, 2011.DING Tianran. Preparation and application of pre-alloyed powder for diamond tools [D]. Beijing: China Academy of Machinery Science and Technology,2011. [16] 黄薪槐. 深水金刚石绳锯机设计及串珠绳寿命预测研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016.HUANG Xinhuai. Design of deep water diamond wire saw machine and research on life prediction of beaded wire [D]. Harbin: Harbin Engineering University, 2016. [17] 张永锐, 王立权, 张岚, 等. 影响金刚石绳锯使用寿命及切削效率因素的分析 [J]. 中国科技论文在线, 2013(2): 1-14.ZHANG Yongrui, WANG Liquan, ZHANG Lan, et al. The analyzing on the factors influencing the service life and cutting efficiency of the diamond wire saw title [J]. China Science and Technology Papers Online, 2013(2): 1-14. [18] 姜荣超. 金刚石均匀分布并有序排列是改善金刚石工具性能的有效途径 [J]. 石材,2006(10):28-37. doi: 10.3969/j.issn.1005-3352.2006.10.014JIANG Rongchao. Even distribution / array pattern of diamond is the best way to improve the performance of diamond tools [J]. Stone,2006(10):28-37. doi: 10.3969/j.issn.1005-3352.2006.10.014 [19] 刘震, 尹育航, 敬臣, 等. 磨粒有序分布对金刚石锯片切割性能的影响 [J]. 材料导报,2023,37(8):34-38. doi: 10.11896/cldb.21070268LIU Zhen, YIN Yuhang, JING Chen, et al. The influence of abrasive orderly arrayed on cutting performance of diamond saw blades [J]. Materials Reports,2023,37(8):34-38. doi: 10.11896/cldb.21070268 [20] 张绍和, 杨仙, 谢晓红, 等. 金刚石有序排列对锯片性能的影响 [J]. 粉末冶金技术,2008,26(6):448-451.ZHANG Shaohe, YANG Xian, XIE Xiaohong, et al. The influence of diamond array pattern on saw-blade performance [J]. Powder Metallurgy Technology,2008,26(6):448-451. [21] 罗晓丽, 刘一波, 黄盛林, 等. 金刚石定位排列钻头刀头结构对切割性能的影响 [J]. 超硬材料工程,2018(2):18-21. doi: 10.3969/j.issn.1673-1433.2018.02.006LUO Xiaoli, LIU Yibo, HUANG Shenglin, et al. The influence of the structure of diamond array pattern on the drilling performance of diamond bits [J]. Superhard Material Engineering,2018(2):18-21. doi: 10.3969/j.issn.1673-1433.2018.02.006 [22] 全国有色金属标准化技术委员会. 金属粉末(不包括硬质合金用粉末)在单轴压制中压缩性的测定: GB/T 1481—2022 [S]. 北京: 中国标准出版社, 2022.National Non-ferrous Metal Standardization Technical Committee. Metallic powders, excluding powders for hardmetals—determination of compressibility in uniaxial compression: GB/T 1481—2022 [S]. Beijing: Standards Press of China, 2022. [23] 全国有色金属标准化技术委员会. 金属粉末 松装密度的测定 第1部分: 漏斗法: GB/T 1479.1—2011 [S]. 北京: 中国标准出版社, 2011.National Non-ferrous Metal Standardization Technical Committee. Metallic powders—determination of apparent density—part 1: Funnal method: GB/T 1479.1—2011 [S]. Beijing: Standards Press of China, 2011. [24] 全国有色金属标准化技术委员会. 金属粉末 流动性的测定 标准漏斗法(霍尔流速计): GB/T 1482−2022 [S]. 北京: 中国标准出版社, 2022.National Non-ferrous Metal Standardization Technical Committee. Metallic powders—determination of flow rate—calibrated funnel methods (hall flowmeter): GB/T 1482—2022 [S]. Beijing: Standards Press of China, 2022. [25] 莫时雄. 金刚石粒径测试方法的研究 [J]. 矿产与地质,2001(3):196-200. doi: 10.3969/j.issn.1001-5663.2001.03.010MO Shixiong. Study on the method of diamond grain size analysis [J]. Mineral Resources and Geology,2001(3):196-200. doi: 10.3969/j.issn.1001-5663.2001.03.010 [26] 唐存印, 章兼植. 金刚石粒径和每克拉颗粒数的研究 [J]. 金刚石与磨料磨具工程,2002(4):32-35. doi: 10.3969/j.issn.1006-852X.2002.04.009TANG Cunyin, ZHANG Jianzhi. Study on diamond particle size and particle number per carat [J]. Diamond & Abrasives Engineering,2002(4):32-35. doi: 10.3969/j.issn.1006-852X.2002.04.009 -