CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPH方法的钢筋混凝土切削模拟研究

谭松成 石恒超 王伟雄 方小红 段隆臣

谭松成, 石恒超, 王伟雄, 方小红, 段隆臣. 基于SPH方法的钢筋混凝土切削模拟研究[J]. 金刚石与磨料磨具工程, 2023, 43(2): 161-169. doi: 10.13394/j.cnki.jgszz.2022.3006
引用本文: 谭松成, 石恒超, 王伟雄, 方小红, 段隆臣. 基于SPH方法的钢筋混凝土切削模拟研究[J]. 金刚石与磨料磨具工程, 2023, 43(2): 161-169. doi: 10.13394/j.cnki.jgszz.2022.3006
TAN Songcheng, SHI Hengchao, WANG Weixiong, FANG Xiaohong, DUAN Longchen. Simulation of reinforced concrete cutting based on SPH method[J]. Diamond & Abrasives Engineering, 2023, 43(2): 161-169. doi: 10.13394/j.cnki.jgszz.2022.3006
Citation: TAN Songcheng, SHI Hengchao, WANG Weixiong, FANG Xiaohong, DUAN Longchen. Simulation of reinforced concrete cutting based on SPH method[J]. Diamond & Abrasives Engineering, 2023, 43(2): 161-169. doi: 10.13394/j.cnki.jgszz.2022.3006

基于SPH方法的钢筋混凝土切削模拟研究

doi: 10.13394/j.cnki.jgszz.2022.3006
基金项目: 国家自然科学基金青年项目(41602373)。
详细信息
    作者简介:

    段隆臣,男,1967年生,教授、博导。主要研究方向:金刚石工具设计、制造与应用的相关教学与研究工作。E-mail:duanlongchen@cug.edu.cn

  • 中图分类号: TG58; TU528.7

Simulation of reinforced concrete cutting based on SPH method

  • 摘要: 钢筋混凝土材料目前已得到广泛应用,但其加工切削过程十分复杂。为解决常规有限元模拟中网格变形尺寸有限的局限性,采用光滑粒子流体动力学(SPH)算法模拟研究金刚石磨粒对钢筋混凝土的切削破碎过程。在数值模拟中,根据金刚石出刃状态将其简化成方形、圆形2种磨粒,并以0.45 mm/ms的速度和0.1 mm的切削深度对钢筋、混凝土和不同组合的钢筋混凝土材料进行表面切削,分析不同情况下的基体碎屑形态特征、切削后基体材料表面形态变化、内部裂纹延伸变化以及磨粒切削面上的应力变化情况。模拟结果表明:SPH方法能够较好地模拟钢筋混凝土在切削过程中的裂纹扩展、碎屑形成和分离;磨粒在切削过程中受到间断性冲击后,会优先破坏混凝土和钢筋材料之间的连接强度,使2种材料逐渐分离,且磨粒以面切削方式进行加工时,相较于点切削方式,能够形成更大的破碎区域。

     

  • 图  1  D-P分段曲线示意图

    Figure  1.  Schematic diagram of D-P segmenting curve

    图  2  方形磨粒切削混凝土和钢筋的变化

    Figure  2.  Change diagrams of square abrasive particle cutting concrete and steel

    图  3  圆形磨粒切削混凝土和钢筋的变化图

    Figure  3.  Change diagrams of circular cutter cutting concrete and steel

    图  4  磨粒切削钢筋混凝土组合的变化图

    (注:黑线为材料分界线)

    Figure  4.  Change diagrams of abrasive particle cutting reinforced concrete

    (Note: the black line is the interface of concrete and steel)

    图  5  方形磨粒切削混凝土钢筋组合形态变化与切削应力

    (注:黑线为材料分界线,蓝色线为坐标分割线)

    Figure  5.  Change diagrams of suqare abrasive cutting reinforced concrete

    (Note: The black line is the interface of concrete and steel; The blue line is the coordinate dividing line)

    图  6  圆形磨粒切削混凝土钢筋组合形态变化与切削应力

    (注:黑线为材料分界线,蓝色线为坐标分割线)

    Figure  6.  Change diagrams of circular abrasive cutting reinforced concrete

    (Note: The black line is the interface of concrete and steel; The blue line is the coordinate dividing line)

    表  1  钢筋的Johnson-Cook模型参数

    Table  1.   Johnson-Cook model parameters of steel

    参数取值
    剪切模量G / kPa 7.70 002 × 107
    Hugoniot弹性极限(HEL)/ kPa 6.570 000 × 105
    初始屈服应力A / kPa 7.920 002 × 105
    硬化常数B / kPa 5.100 001 × 105
    应变速率常数C 0.014 000
    热软化指数m 1.030 000
    熔点$ {T}_{\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{t}} $ / K 1 793.000 000
    损伤常数D1 0.050 000
    损伤常数D2 3.440 000
    损伤常数D3 −2.120 000
    损伤常数D4 0.002 000
    损伤常数D5 0.610 000
    下载: 导出CSV

    表  2  混凝土分段D-P强度模型参数

    Table  2.   Concrete parameters of segmenting D-P strength model

    参数取值
    剪切模量G /kPa7.880 000 × 106
    应力1 P1 / kPa0.000 000
    应力2 P2 / kPa8.000 000 × 104
    应力3 P3 / kPa1.100 000 × 105
    应力4 P4 / kPa2.000 000 × 105
    屈服强度1 σS1 / kPa2.500 000 × 105
    屈服强度2 σS2 / kPa1.100 000 × 105
    屈服强度3 σS3 / kPa1.600 000 × 105
    屈服强度4 σS4 / kPa1.950 000 × 105
    下载: 导出CSV
  • [1] 段隆臣, 谭松成. 金刚石工具在钢筋混凝土结构修复改造中的应用与研究现状 [J]. 探矿工程(岩土钻掘工程),2016,43(6):34-38. doi: 10.3969/j.issn.1672-7428.2016.06.008

    DUAN Longchen, TAN Songcheng. Application and research status of diamond tools on the repair and reconstruction of reinforced concrete structure [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(6):34-38. doi: 10.3969/j.issn.1672-7428.2016.06.008
    [2] SHALENNY V. Safe technologies for cutting reinforced concrete structures by means of diamond tools [C]. E3S Web of Conferences, 2019, 97: 03009.
    [3] 丁星妤, 吴晶晶. 薄壁钻头中金刚石定位排布参数设计 [J]. 湖南城市学院学报(自然科学版),2021,30(4):6-9. doi: 10.3969/j.issn.1672-7304.2021.04.0002

    DING Xingyu, WU Jingjing. Parameter design of diamond positioning arrangement in thin-wall bit [J]. Journal of Hunan City University (Natural Science),2021,30(4):6-9. doi: 10.3969/j.issn.1672-7304.2021.04.0002
    [4] 吴勇, 傅帝尹, 罗怀明, 等. 深基坑内支撑无损拆除施工方法的应用 [J]. 施工技术,2020,40(S1):65-68.

    WU Yong, FU Diyin, LUO Huaiming, et al. Application of nondestructive demolition construction method of deep foundation excavation inner support [J]. Construction Technology,2020,40(S1):65-68.
    [5] 羊自力, 胡珊珊, 王艳, 等. 基于小波分析的金刚石锯片锯切混凝土加工状态及表面质量分析 [J]. 工具技术,2018,52(4):45-51. doi: 10.3969/j.issn.1000-7008.2018.04.009

    YANG Zili, HU Shanshan, WANG Yan, et al. Machining state and surface quality analysis of diamond saw blade sawing concrete based on wavelet analysis [J]. Tool Engineering,2018,52(4):45-51. doi: 10.3969/j.issn.1000-7008.2018.04.009
    [6] HU H X, CHEN W, DENG C, et al. Effect of matrix composition on the performance of Fe-based diamond bits for reinforced concrete structure drilling [J]. International Journal of Refractory Metals and Hard Materials,2021,95:105419. doi: 10.1016/j.ijrmhm.2020.105419
    [7] CHEN B, CHEN P, HUANG Y, et al. Blade segment with a 3D lattice of diamond grits fabricated via an additive manufacturing process [J]. Chinese Journal of Mechanical Engineering,2020,33(5):195-206. doi: 10.1186/s10033-020-00496-6
    [8] 孙志超, 刘新琛, 张宝鹏. 金刚石锯片切割混凝土的切削力影响因素分析 [J]. 中国民航大学学报,2018,36(3):58-61. doi: 10.3969/j.issn.1674-5590.2018.03.012

    SUN Zhichao, LIU Xinchen, ZHANG Baopeng. Influencing factors analyses of concrete cutting force of diamond saw blade [J]. Journal of Civil Aviation University of China,2018,36(3):58-61. doi: 10.3969/j.issn.1674-5590.2018.03.012
    [9] FANG Z, HARRISON J P. Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:443-457. doi: 10.1016/S1365-1609(02)00035-7
    [10] PRADEEP L. Studies on the formation of discontinuous chips during rock cutting using an explicit finite element model [J]. International Journal of Advanced Manufacturing Technology,2014,70:635-648. doi: 10.1007/s00170-013-5309-y
    [11] HUANG H, DETOURNAY E. Intrinsic length scales in tool-rock interaction [J]. International Journal of Geomechanics,2008,8(1):39-44. doi: 10.1061/(ASCE)1532-3641(2008)8:1(39)
    [12] CHEN C S, PAN E, AMADEI B. Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1998,35(2):195-218. doi: 10.1016/S0148-9062(97)00330-6
    [13] 陈昌雄. 特殊结构金刚石圆锯片性能研究 [D]. 南宁: 广西大学, 2006.

    CHEN Changxiong. Study on the performance of special structure diamond saw blade [D]. Nanning: Guangxi University, 2006.
    [14] 刘会宁. 特殊结构金刚石圆锯片干切混凝土的动力特性及实验研究 [D]. 南宁: 广西大学, 2007.

    LIU Huining. Dynamical and experimental study on special structure diamond saw blade dry-cutting concrete [D]. Nanning: Guangxi University, 2007.
    [15] 鞠军伟. 开圆形降噪孔金刚石圆锯片振动噪声研究 [D]. 济南: 山东大学, 2015.

    JU Junwei. Vibration noise study on diamond circular saw blades with round noise reduction holes [D]. Jinan: Shandong University, 2015.
    [16] 叶鲁浩. 耳型消音缝金刚石圆锯片振动与声辐射特性研究 [D]. 济南: 山东大学, 2016.

    YE Luhao. Study on vibration and sound radiation characteristics of diamond saw blades with ear-shape silencing seams [D]. Jinan: Shandong University, 2015.
    [17] 张林中. 金刚石切削岩石的模拟 [D]. 北京: 中国地质大学(北京), 2008.

    ZHANG Linzhong. The simulation of cutting rocks by diamond [D]. Beijing: China University of Geosciences (Beijing), 2008.
    [18] 肖月. 废弃核设施拆除金刚石绳锯机的切削热与磨损特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019.

    XIAO Yue. Research on wear performance and cutting heat of diamond wire sawing machine in abandoned nuclear facility [D]. Harbin: Harbin Engineering University, 2019.
    [19] 茹聪. 金刚石串珠绳解体退役核设施的切削特性及切屑回收技术研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020.

    RU Cong. Research on the cutting characteristics and chip recovery technology of the decommissioning nuclear facility of diamond string [D]. Harbin: Harbin Engineering University, 2020.
    [20] 孙永泉. 核设施解体绳锯机设计及切削机理的分子动力学仿真研究 [D]. 哈尔滨工程大学, 2021.

    SUN Yongquan. Design of diamond wire saw for nuclear facility demolition and MD simulation for cutting mechanism [D]. Harbin: Harbin Engineering University, 2021.
    [21] GINGOLD R A, MONAGHAN J J. Binary fission in damped rotating polytropes [J]. Monthly Notices of the Royal Astronomical Society,1978,184:481-499. doi: 10.1093/mnras/184.3.481
    [22] GRAY J A, MONAGHAN J J. Numerical modelling of stress fields and fracture around magma chambers [J]. Journal of Volcanology and Geothermal Research,2004,135:259-283. doi: 10.1016/j.jvolgeores.2004.03.005
    [23] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Archives of Computational Methods in Engineering,2010,17:25-76. doi: 10.1007/s11831-010-9040-7
    [24] JOHNSON R, COOK W K. A constitutive model and data for metals subjected to large strains high strain rates and high temperatures [C]. The 7th International Symposium on Ballistics: Hague, 1983, 541-547.
    [25] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics,1952,10:157-165. doi: 10.1090/qam/48291
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  239
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 修回日期:  2022-08-20
  • 录用日期:  2022-08-23
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回