CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测

朱欢欢 迟玉伦 张梦梦 熊力 应晓昂

朱欢欢, 迟玉伦, 张梦梦, 熊力, 应晓昂. 基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测[J]. 金刚石与磨料磨具工程, 2024, 44(1): 73-84. doi: 10.13394/j.cnki.jgszz.2022.0198
引用本文: 朱欢欢, 迟玉伦, 张梦梦, 熊力, 应晓昂. 基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测[J]. 金刚石与磨料磨具工程, 2024, 44(1): 73-84. doi: 10.13394/j.cnki.jgszz.2022.0198
ZHU Huanhuan, CHI Yulun, ZHANG Mengmeng, XIONG Li, YING Xiaoang. On line prediction of roll grinding chatter based on EMD component and wavelet packet energy entropy[J]. Diamond & Abrasives Engineering, 2024, 44(1): 73-84. doi: 10.13394/j.cnki.jgszz.2022.0198
Citation: ZHU Huanhuan, CHI Yulun, ZHANG Mengmeng, XIONG Li, YING Xiaoang. On line prediction of roll grinding chatter based on EMD component and wavelet packet energy entropy[J]. Diamond & Abrasives Engineering, 2024, 44(1): 73-84. doi: 10.13394/j.cnki.jgszz.2022.0198

基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测

doi: 10.13394/j.cnki.jgszz.2022.0198
详细信息
    作者简介:

    朱欢欢,女,1984年生,硕士、实验师。主要研究方向:机械设计、机械制造、结构仿真、动力学仿真等。E-mail:zhuhuanhuan315@126.com

    通讯作者:

    张梦梦,女,1988年生,硕士、讲师。主要研究方向:模具、CAD/CAM/CAE、增材制造技术等。E-mail:1109522920@qq.com

  • 中图分类号: TG58

On line prediction of roll grinding chatter based on EMD component and wavelet packet energy entropy

  • 摘要: 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解( empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.776 5 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。

     

  • 图  1  EMD算法流程图

    Figure  1.  EMD algorithm flow chart

    图  2  小波包熵算法流程图

    Figure  2.  Wavelet entropy algorithm flow chart

    图  3  最优超球面示意图

    Figure  3.  Schematic diagram of the optimal hypersphere

    图  4  LV-SVM算法流程图

    Figure  4.  LV-SVM algorithm flow chart

    图  5  实验现场及传感器位置

    Figure  5.  Experiment site and sensor locations

    图  6  采集系统流程图

    Figure  6.  Acquisition system flow chart

    图  7  振动传感器采集的信号时域图

    Figure  7.  Time domain plot of the signal acquired by the vibration sensor

    Figure  8.  Time domain map of the signal acquired by the acoustic emission sensor

    图  9  振动传感器的各IMF信号

    Figure  9.  Each IMF signal of the vibration sensor

    图  10  IMF的相关系数

    Figure  10.  IMF correlation coefficient

    图  11  声发射信号能量占比

    Figure  11.  Proportion of acoustic transmitted signal energy

    图  12  小波包特征熵值差异性对比

    Figure  12.  Comparison of the difference in the characteristic entropy value of wavelet packets

    图  13  颤振识别结果对比

    Figure  13.  Comparison of flutter recognition results

    图  14  颤振识别准确率

    Figure  14.  Flutter recognition accuracy

    图  15  颤振识别模型运行时间

    Figure  15.  Running time of flutter recognition model

    图  16  正常和颤振2种磨削状态下轧辊表面的振纹检测结果

    Figure  16.  Vibration mark detection results on roll surface under two grinding states of normal and vibration

    表  1  机床及砂轮基本参数

    Table  1.   Basic parameters of machine tool and grinding wheel

    参数规格或取值
    机床型号MM1300 × 3000
    头架转速 n1 / (r·min−1)18~140
    主轴最高转速 n2 / (r·min−1)8000
    可加工最大工件长度 L1 / mm1677
    砂轮架移动分辨率 L2 / mm0.001
    砂轮架重复定位精度 L3 / mm0.002
    砂轮外径 × 内径 × 厚度400 mm × 200 mm × 20 mm
    砂轮线速度 vs / (m·s−1)35
    砂轮中氧化铝磨粒粒度代号F120/140
    砂轮修整方式金刚石笔修整
    修整比 R0.7
    每次修整量 L4 / μm1.5
    液压传动速度 v1 / (m·s−1)0.1~4.0
    快速进给量 ap / μm50
    下载: 导出CSV

    表  2  输入特征IMFrms数据集δvar

    Table  2.   Input characteristic IMFrms dataset δvar

    类型序号δvar
    Imf1Imf2Imf4Imf5总和
    无颤振10.011 30.005 10.006 30.010 50.033 2
    20.008 10.004 20.006 80.011 20.030 3
    290.007 10.003 10.002 20.002 40.014 8
    300.007 10.003 00.002 40.002 00.014 5
    有颤振10.009 10.005 60.002 50.002 00.019 2
    20.009 50.005 10.002 30.002 00.018 9
    290.010 30.004 80.003 20.002 10.020 4
    300.010 10.004 90.002 90.002 20.020 1
    下载: 导出CSV

    表  3  输入特征IMFrms数据集 δstd

    Table  3.   Input characteristic IMFrms dataset δstd

    类型序号δstd
    Imf1Imf2Imf4Imf5总和
    无颤振10.011 40.005 10.006 30.010 50.033 3
    20.008 10.004 20.006 80.011 20.030 3
    290.007 10.003 10.002 20.002 40.014 8
    300.007 10.003 00.002 40.002 00.014 5
    有颤振10.009 10.005 60.002 50.002 00.019 2
    20.009 50.005 10.002 30.002 00.018 9
    290.010 30.004 80.003 20.002 10.020 4
    300.010 10.004 90.002 90.002 20.020 1
    下载: 导出CSV

    表  4  小波包能量熵计算值

    Table  4.   Wavelet packet energy entropy calculation value

    类型序号单个节点处小波包熵值 EEN
    H0H1H2H3H4H5H6H7
    无颤振10.273 80.103 50.102 10.227 70.225 40.124 40.122 40.140 3
    20.279 70.112 90.106 50.228 80.227 40.125 60.123 60.141 8
    290.285 90.132 70.108 60.229 60.226 30.126 00.125 20.142 6
    300.286 50.147 40.110 80.226 30.222 90.124 80.123 20.139 2

    有颤振
    10.530 70.480 40.244 10.347 70.341 40.200 40.196 40.223 8
    20.529 40.479 70.251 50.358 80.352 20.208 50.204 90.232 6
    290.530 40.466 30.245 90.362 20.355 60.210 00.207 60.235 8
    300.526 10.412 00.245 60.399 10.397 10.241 20.236 40.269 3
    下载: 导出CSV
  • [1] 韦莹, 唐水清. 浅谈轧辊磨削质量影响因素及主要缺陷控制 [J]. 金属世界,2021(5):38-43.

    WEI Ying, TANG Shuiqing. Analysis of influencing factors of roller grinding quality and main defect control [J]. Metal World,2021(5):38-43.
    [2] 郜志英, 臧勇, 曾令强. 轧机颤振建模及理论研究进展 [J]. 机械工程学报,2015(16):87-105,112.

    GAO Zhiying, ZANG Yong, ZENG Lingqiang. Review of modelling and theoretical studies on chatter in the rolling mills. [J]. Journal of Mechanical Engineering,2015(16):87-105,112.
    [3] IBRAHIM R A. Recent advances in nonlinear passive vibration isolators [J]. Journal of Sound and Vibration,2008,314(3/4/5):371-452.
    [4] GASPARETTO A. A system theory approach to mode coupling chatter in machining [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1998,120(4):545-547. doi: 10.1115/1.2801501
    [5] YUAN L, KESKINEN E A, JARVENPAA V M. Stability analysis of roll grinding system with double time delay effects [J]. Solid Mechanics and Its Applications,2006,130:375-387.
    [6] TLUSTY J, CRITCHLEY S, PATON D. Chatter in cold rolling [J]. Annals of the CIRP,1982,31(1):195-199. doi: 10.1016/S0007-8506(07)63296-X
    [7] 侯东晓, 郭大武, 陈小辉. 基于动态轧制力的四辊轧机垂直-扭转耦合非线性振动特性研究 [J]. 振动与冲击,2020,39(20):106-112.

    HOU Dongxiao, GUO Dawu, CHEN Xiaohui. A study on vertical-torsional coupled nonlinear vibration characteristics of 4-h rolling mill based on dynamic rolling force [J]. Journal of Vibration and Shock,2020,39(20):106-112.
    [8] AZEVEDO C R F, NETO J B. Failure analysis of forged and induction hardened steel cold work rolls [J]. Engineering Failure Analysis,2004,11(6):951-966. doi: 10.1016/j.engfailanal.2003.11.005
    [9] SOMKIAT T, NARONGSAK P. Development of chatter detection in milling processes [J]. International Journal of Advanced Manufacturing Technology,2013,65(5):919-927.
    [10] 聂建华, 司伟. 一种基于振动信号处理的颤振预报方案研究 [J]. 工业仪表与自动化,2009(4):57-60.

    NIE Jianhua, SI Wei. The method for prediction of chatter based on the vibration signal processing [J]. Industrial Instrumentation & Automation,2009(4):57-60.
    [11] JI Y J, WANG X B, LIU Z B, et al. Early milling chatter identification by improved empirical mode decomposition and multi-indicator synthetic evaluation [J]. Journal of Sound and Vibration,2018,433:138-159. doi: 10.1016/j.jsv.2018.07.019
    [12] CAO H R, ZHOU K, CHEN X F. Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators [J]. International Journal of Machine Tools & Manufacture,2015,92:52-59.
    [13] LU K B, LIAN Z S, GU F S, et al. Model-based chatter stability prediction and detection for the turning of a flexible workpiece [J]. Mechanical Systems and Signal Processing,2018,100:814-826. doi: 10.1016/j.ymssp.2017.08.022
    [14] YAO Z, MEI D, CHEN Z. On-line chatter detection and identification based on wavelet and support vector machine [J]. Journal of Materials Processing Technology,2010,210(5):713-719. doi: 10.1016/j.jmatprotec.2009.11.007
    [15] WANG Y, ZHANG M K, TANG X W, et al. A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot [J]. Journal of Intelligent Manufacturing,2022,31:1483-1502.
    [16] 钱士才, 孙宇昕, 熊振华. 基于支持向量机的颤振在线智能检测 [J]. 机械工程学报, 2015, 51(20): 1-8.

    QIAN Shicai, SUN Yuxin, XIONG Zhenhua, Support vector machine based online intelligent chatter detection [J]. Journal of Mechanical Engineering. 2015, 51(20): 1-8.
    [17] 董新峰, 张为民, 姜源. 基于EMD复杂度与鉴别信息的磨削颤振预测 [J]. 振动、测试与诊断,2012(4):602-607.

    DONG Xinfeng, ZHANG Weiming, JIANG Yuan. Grinding chatter prediction based on EMD complexity and discriminant information [J]. Journal of Vibration, Measurement & Diagnosis,2012(4):602-607.
    [18] 任瑶, 李国富, 应小刚, 等. 基于小波包熵与SVM的导轨摩擦磨损状态识别 [J]. 计算机工程,2016,42(11):281-284.

    REN Yao, LI Guofu, YING Xiaogang, et al. Guideway friction and wear state recognition based on wavelet package entropy and SVM [J]. Computer Engineering,2016,42(11):281-284.
    [19] 聂鹏, 董慧, 李正强, 等. 基于改进EMD和LS-SVM的刀具磨损状态识别 [J]. 北京工业大学学报, 2013(12): 1784-1790.

    NIE Peng, DONG Hui, LI Zhengqiang, et al, State recognition of tool wear based on improved empirical mode decomposition and least squares support vector machine [J]. Journal of Beijing University of Technology, 2013(12): 1784-1790.
    [20] 于德介, 杨宇, 程军圣. 一种基于SVM和EMD的齿轮故障诊断方法 [J]. 机械工程学报,2005,41(1):140-144. doi: 10.3901/JME.2005.01.140

    YU Dejie, YANG Yu, CHENG Junsheng. A gear fault diagnosis method based on SVM and EMD [J]. Chinese Journal of mechanical Engineering,2005,41(1):140-144. doi: 10.3901/JME.2005.01.140
    [21] 张磊, 郑侃, 孙连军, 等. 基于小波包敏感频带选择的复材铣边颤振监测研究 [J]. 机械工程学报,2021(6):1-9.

    ZHANG Lei, ZHENG Kan, SUN Lianjun, et al. Investigation on chatter monitoring of composite milling edge based on the selection of Sensitive [J]. Journal of Mechanical Engineering,2021(6):1-9.
    [22] 路俏俏, 黎敏, 王晓景, 等. 基于信息熵的轧辊裂纹声发射三维定位方法 [J]. 机械工程学报,2013,49(18):78-84. doi: 10.3901/JME.2013.18.078

    LU Qiaoqiao, LI Min, WANG Xiaojing, et al. 3D location of acoustic emission to roll cracks based on information entropy [J]. Journal of Mechanical Engineering,2013,49(18):78-84. doi: 10.3901/JME.2013.18.078
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  67
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-04-21
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回